Проблема управления тероядерных синтезных реакций.
План:
Физические предпосылки УТС
Условия на токамак-реактор
Производство трития
Краткая история исследований по УТС
Развитие средств нагрева плазмы.
1. Физические предпосылки УТС
Для производства энергии предполагается использовать ядерные реакции слияния легких ядер. Среди многих реакций такого типа наиболее легко осуществима реакция слияния ядер дейтерия и трития
Здесь через обозначено стабильное ядро гелия (альфа частица), через N – нейтрон, в скобках обозначена энергия частиц после реакции, . В этой реакции энергия, выделяющаяся на частицу с массой нейтрона, равна примерно 3.5 МэВ. Это примерно в 3-4 раза больше энергии на частицу, выделяющейся при делении урана.
Какие проблемы возникают при попытке реализации реакции (1) для получения энергии?
Главная проблема — трития нет в природе. Он радиоактивен, период полураспада у него приблизительно равен 12-ти годам, поэтому, если он и был когда-то в больших количествах на Земле, то от него давно ничего не осталось. Количество же трития, получаемого на Земле за счет естественной радиоактивности или за счет космического излучения ничтожно мало. Небольшое количество трития получается в реакциях, идущих внутри атомного уранового реактора. На одном из реакторов в Канаде организован сбор такого трития, но его наработка в реакторах очень медленна и производство оказывается слишком дорогим.
Таким образом, производство энергии в термоядерном реакторе на основе реакции (1) должно сопровождаться одновременной наработкой трития в этом же реакторе. Как это можно сделать мы будем обсуждать ниже.
Обе частицы, ядра дейтерия и трития, участвующие в реакции (1), имеют положительный заряд и потому отталкиваются друг от друга кулоновской силой. Для преодоления этой силы частицы должны иметь большую энергию. Зависимость скорости реакции (1), , от температуры тритиево-дейтериевой смеси показана на Рис.1 в двойном логарифмическом масштабе.
|
Рис.1. Скорости различных термоядерных реакций в зависимости от температуры ионов.
|
Видно, что с ростом температуры вероятность реакции (1) быстро возрастает. Приемлемая для реактора скорость реакции достигается при температуре T > 10 кэВ. Если учесть, что градусов, то температура в реакторе должна превышать 100 млн градусов. Все атомы вещества при такой температуре должны быть ионизованы, а само вещество в таком состоянии принято называть плазмой. Напомним, что по современным оценкам температура в центре Солнца достигает «лишь» 20 млн градусов.
Есть и другие реакции слияния, пригодные, в принципе, для выработки термоядерной энергии. Мы здесь отметим лишь две широко обсуждающиеся в литературе реакции
Здесь – изотоп ядра гелия с массой равной 3, p – протон (ядро водорода). Реакция (2) хороша тем, что для нее на Земле имеется сколько угодно топлива (дейтерия). Технология выделения дейтерия из морской воды отработана и относительно недорога. К сожалению, скорость этой реакции заметно меньше, чем скорость реакции (1) (см. Рис.1), поэтому для реализации реакции (2) требуется температура порядка 500 млн градусов.
Реакция (3) вызывает в настоящее время большой ажиотаж среди людей, занимающихся космическими полетами. Известно, что изотопа много на Луне, поэтому возможность его транспортировки на Землю обсуждается, как одна из приоритетных задач космонавтики. К сожалению, скорость этой реакции (Рис.1) также заметно меньше, скорости реакции (1) и требуемые температуры для осуществления этой реакции также находятся на уровне 500 млн градусов.
Для удержания плазмы с температурой порядка 100 – 500 млн градусов было предложено использовать магнитное поле (И.Е.Тамм, А.Д. Сахаров [1]). Наиболее перспективными сейчас представляются установки, в которых плазма имеет вид тора (бублика). Большой радиус этого тора мы обозначим через R , а малый через a . Для подавления неустойчивых движений плазмы помимо тороидального (продольного) магнитного поля B 0 требуется еще поперечное (полоидальное) поле. Существует два типа установок, в которых реализуется подобная магнитная конфигурация. В установках типа токамак полоидальное поле создается продольным током I , протекающим в плазме по направлению поля . В установках типа стелларатор полоидальное поле создается внешними винтовыми обмотками с током. Каждая из этих установок имеет свои преимущества и недостатки. В токамаке ток I должен быть согласован с полем . Стелларатор технически более сложен. Сейчас более продвинутыми являются установки типа токамак. Хотя имеются также большие, успешно работающие стеллараторы.
Do'stlaringiz bilan baham: |