14.2
1
5
.
sin
n
n
n
14.3
1
.
2
cos
n
n
n
14.5
1
3
.
2
2
sin
n
n
n
14.4
1
3
.
3
cos
n
n
n
14.6
1
2
.
1
ln
4
cos
n
n
n
184
14.7
1
2
.
2
cos
1
n
n
n
n
14.8
1
5
2
.
1
2
sin
1
n
n
n
n
14.9
1
2
1
.
2
1
1
1
1
n
n
n
n
n
n
14.10
1
3
.
1
1
n
n
n
14.11
1
1
.
ln
1
n
n
n
n
14.12
1
1
.
1
ln
2
ln
ln
1
n
n
n
n
14.13
1
4
.
1
2
1
n
n
n
n
n
14.14
1
.
1
sin
4
cos
n
n
n
14.15
1
.
cos
1
1
n
n
n
14.16
1
2
1
.
1
1
1
n
n
n
n
14.17
1
2
.
4
2
1
n
n
n
arctg
n
n
14.18
1
3
.
sin
n
n
n
14.19
1
.
sin
sin
n
n
n
n
14.20
1
2
.
1
sin
n
n
.
14.21
1
.
1
cos
2
ln
ln
2
sin
n
n
n
n
15-masala. Quyidagi qatorlar
ning qanday qiymatlarida
a) absolut yaqinlashuvchi,
b) shartli yaqinlashuvchi bo`lishini aniqlang.
15.1
1
2
.
sin
1
n
n
n
n
15.2
1
2
1
.
cos
2
1
n
n
n
n
n
15.3
1
2
.
ln
2
sin
n
n
n
n
15.4
1
1
.
1
1
1
n
n
n
n
15.5
1
1
.
!
!
2
!
!
1
2
1
n
n
n
n
15.6
2 3
.
1
1
n
n
n
n
15.7
1
.
!
1
...
2
1
n
n
n
15.9
1
.
1
ln
2
sin
n
n
n
n
15.8
1
.
1
ln
1
n
n
n
n
n
15.10
1
.
1
ln
1
2
1
n
n
n
n
n
185
15.11
1
1
.
1
n
n
n
15.12
1
.
sin
n
n
n
15.13
1
.
1
n
n
n
15.14
1
.
1
1
n
n
n
n
n
15.15
1
1
.
1
n
n
n
n
15.16
1
.
!
!
2
2
2
...
2
1
n
n
n
15.17
1
1
.
1
1
1
ln
n
n
n
15.18
1
2
2
.
1
1
1
n
n
n
n
n
n
n
15.19
1
.
1
2
1
n
n
n
n
15.20
2
2
.
1
ln
1
n
n
n
n
n
15.21
1
.
cos
n
n
n
16-masala.
Tengliklar isbotlansin.
16.1
0
2
.
2
2
1
1
n
n
16.2
2
3
3
.
3
2
1
1
n
n
n
16.3
1
1
.
2
2
cos
n
n
16.4
2
.
3
1
1
2
1
n
n
n
16.5
1
.
sin
2
cos
n
n
x
x
x
16.6
0
2
.
1
.
1
1
1
n
n
x
x
x
16.7
...
2
2
2
2
2
2
2
2
2
2
16.8
1
.
3
3
2
1
3
3
1
3
3
n
n
n
n
n
16.9
1
2
2
1
4
4
2
n
n
n
(Vallis formulasi).
16.10
1
2
.
4
1
2
1
1
n
n
16.11
1
2
.
2
4
1
1
n
n
16.12
1
.
2
n
n
x
shx
x
ch
186
Quyidagi cheksiz ko`paytmalarning yaqinlashuvchiligini
isbotlang va ularning qiymatlarini toping.
16.13
3
2
2
.
1
4
n
n
n
16.14
1
.
5
2
3
2
7
2
1
2
n
n
n
n
n
16.15
1
.
2
1
1
n
n
n
16.16
1
1
.
2
n
n
n
Quyidagi
cheksiz
ko`paytmalarni
absolut
va
shartli
yaqinlashishga tekshiring.
16.17
1
1
.
1
1
n
n
n
16.18
1
1
.
1
1
n
n
n
16.19
2
.
1
n
n
n
n
16.20
2
.
ln
1
1
n
n
n
16.21
1
1
.
1
1
n
p
n
n
-C-
Namunaviy variant yechimi.
1.21-masala. Ushbu
1
2
2
3
9
3
n
n
n
qator yig`indisini toping.
1
3
1
2
3
1
2
3
1
3
3
3
2
3
1
9
3
2
3
9
3
2
n
n
n
n
n
n
n
n
a
n
n
k
n
k
k
n
n
n
n
k
k
a
S
1
1
.
1
3
1
1
1
3
1
2
3
1
...
10
1
7
1
7
1
4
1
4
1
1
1
3
1
2
3
1
Demak,
.
1
1
3
1
1
lim
lim
:
n
S
S
n
n
n
Do'stlaringiz bilan baham: |