Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet109/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   105   106   107   108   109   110   111   112   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

example: 3.5-1
The voltage observed across the 10
m
F capacitor in Fig. 3.5-1 is shown in the same figure. Find the 
current source function i
S
(t) if the initial voltage across the capacitor was zero.
–1
–2
–3
1
1 2 3 4 5 6 7 8 9
2
3
t
in 
m
s
v
C
(
t
)
(V)
i
S
(
t
)
i
C
(
t
)
v
C
(
t
)
C = 
10 
m
F
+

Fig. 3.5-1 
Circuit and waveform for Example 3.5-1 
Solution
The voltage across capacitor undergoes a sudden jump by 1V at t 
=
0. This is possible only if a charge 
of 10
m

× 
1V 
=
10
m
C is dumped on the capacitor instantaneously at t 
=
0. Therefore, i
S
(t) must contain 
10
-
5
d
(t). 
Similarly, at 
=
1
m
s the capacitor voltage again jumps up by 1V. This calls for another 10
m
C to be 
dumped on it at t 
=
1
m
s. Therefore i
S
(t) must contain 10
-
5
d
(t
-
10
-
5
). 
The capacitor voltage jumps by – 1V at 
=
 
m
s. This calls for –10
-
5
d
(t
-
2
× 
10
-
5
) in i
S
(t). Proceeding 
this way we get the following waveform for i
S
(t).
www.TechnicalBooksPDF.com


3.36
Single Element Circuits
1 2 3 4 5 6 7 8 9
–2 
10
–5
–1 
10
–5

10
–5

10
–5
i
S
(
t
)
(A)

in 
µ
s
i
S
(
t
)
i
C
(
t
)
v
C
(
t
)
C = 
10 
µ
F
+

Fig. 3.5-2 
Solution for current source function in Example 3.5-1 
The unit given in the vertical axis is Amperes. However, when impulse content is indicated in a 
waveform, the value read from vertical axis must be interpreted as magnitude of area-content and unit 
must be suitably re-interpreted.
example: 3.5-2
The voltage across a 1000
m
F capacitor with zero initial voltage at t 
=
0
-
is given in Fig. 3.5-3. Find 
(i) the applied current waveform, (ii) waveforms of power and energy delivered by the current source, 
(iii) time intervals during which the capacitor is delivering energy to the source and (iv) the net energy 
delivered by capacitor to the source. Also, explain why the energy delivered by the source never 
becomes negative in this example.
i
S
(
t
)
i
C
(
t
)
v
C
(
t
)
C = 
1000 
µ
F
+

v
C
(
t
)
(V)
t
(ms)
1 2 3 4 5 6 7 8
8
6
4
2
Fig. 3.5-3 
Circuit and waveform for Example 3.5-2
Solution
(i) The current through a capacitor is given by the first derivative of voltage scaled by the capacitance 
value of the capacitor. The voltage waveform contains four straight-line segments followed by 
zero value. The slopes of voltage in various intervals are as follows.
Value of slope of capacitor voltage in [0

,2
-

=
3 V/ms
Value of slope of capacitor voltage in [2

,4
-

=
-
3 V/ms
Value of slope of capacitor voltage in [4

,6
-

=
3 V/ms
Value of slope of capacitor voltage in [6

,8
-

=
-
3 V/ms
Value of slope of capacitor voltage in [8

,9] 
=
0 V/ms
Multiplying these values by 1mF we get 3A, 
-
3A, 3A, 
-
3 A and 0A as the value of current 
in the five intervals. Hence, the current source function will be a rectangular pulse waveform as 
shown in Fig. 3.5-4 (b).


The Capacitor 
3.37
(ii) The power delivered by the current source will be given by the product of v
C
(t) and i
S
(t). It will 
have a waveform containing straight-line segments since v
C
(t) contains straight-line segments and 
the waveform of i
S
(t) is a symmetric rectangular pulse waveform. The power waveform is shown in 
Fig. 3.5-4 (c). The power delivered by the source alternates between positive and negative values.
Energy delivered by the current source is given by the running integral of power waveform 
from 0

. The waveform of delivered energy is shown in Fig. 3.5-4 (d). It is always positive.
(iii) The capacitor is delivering energy to the current source when the power delivered by the current 
source shows a negative value. 
Hence, during [2

,4
-
] and [6

,8
-
] (values indicating time in ms) time intervals the capacitor 
delivers energy to the current source.
(iv) The capacitor had an initial voltage of 0V and it ends up with 0V. Therefore, the net change 
in stored energy of capacitor is zero. There is no other element in the circuit that can store or 
dissipate energy. Hence, the net energy delivered by the current source also must be zero.
The capacitor in this example started with zero voltage initially. Hence, the initial energy stored in it 
is zero. Capacitors can only store energy and they can not generate or dissipate energy. They can store 
energy temporarily and give it back to other elements later. Therefore, energy function of a capacitor is 
always zero or positive-valued. An electrical element with an energy function,
E t
v t i t dt
t
( )
( ) ( )
=
−∞

that 
is 

0 for all t is called a passive element and capacitor is one such passive element.
A capacitor can give back more energy to a source than it received from it, even temporarily, only 
if it already had some energy in store before the source started acting on it. In this example, C had no 
such initial energy. Hence, the source can not receive more than what it gave. Therefore, the value of 
energy delivered by the source will never be negative in this circuit.
v
C
(
t
) (V)
t
(ms)
(a)
1 2 3 4 5 6 7 8
8
6
4
2
i
S
(
t
) (A)
t
(ms)
(b)
1 2 3 4 5 6 7 8
3
–3
p
(
t
) (W)
t
(ms)
(c)
1 2 3 4 5 6 7 8
18
9
–9
–18
E
(
t
) (mJ)
t
(ms)
(d)
1 2 3 4 5 6 7 8
18
–18
Fig. 3.5-4 
Waveforms for Example 3.5-2: (a) capacitor voltage (b) capacitor current 
(c) power delivered by source (d) energy delivered by source

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   105   106   107   108   109   110   111   112   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish