European Polymer Journal 119 (2019) 181–188
187
applications of fucose rich sulfated polysaccharides and fucoidans isolated from
brown seaweeds: A review, Carbohydr. Polym. 88 (2012) 13
–
20,
https://doi.org/
10.1016/j.carbpol.2011.12.029
.
[5] J.-K. Kim, M.L. Cho, S. Karnjanapratum, I.-S. Shin, S.G. You, In vitro and in vivo
immunomodulatory activity of sulfated polysaccharides from Enteromorpha pro-
lifera, Int. J. Biol. Macromol. 49 (2011) 1051
–
1058,
https://doi.org/10.1016/j.
ijbiomac.2011.08.032
.
[6] M. Pérez-Recalde, M.C. Matulewicz, C.A. Pujol, M.J. Carlucci, In vitro and in vivo
immunomodulatory activity of sulfated polysaccharides from red seaweed
Nemalion helminthoides, Int. J. Biol. Macromol. 63 (2014) 38
–
42,
https://doi.org/
10.1016/j.ijbiomac.2013.10.024
.
[7] Y. Yanase, T. Hiragun, K. Uchida, K. Ishii, S. Oomizu, H. Suzuki, et al., Peritoneal
injection of fucoidan suppresses the increase of plasma IgE induced by OVA-sen-
sitization, Biochem. Biophys. Res. Commun. 387 (2009) 435
–
439,
https://doi.org/
10.1016/j.bbrc.2009.07.031
.
[8] K. Iwamoto, T. Hiragun, S. Takahagi, Y. Yanase, S. Morioke, S. Mihara, et al.,
Fucoidan suppresses IgE production in peripheral blood mononuclear cells from
patients with atopic dermatitis, Arch. Dermatol. Res. 303 (2011) 425
–
431,
https://
doi.org/10.1007/s00403-010-1115-7
.
[9] L.S. Costa, G.P. Fidelis, S.L. Cordeiro, R.M. Oliveira, D.A. Sabry, R.B.G. Câmara,
et al., Biological activities of sulfated polysaccharides from tropical seaweeds,
Biomed. Pharmacother. 64 (2010) 21
–
28,
https://doi.org/10.1016/j.biopha.2009.
03.005
.
[10] S. Li, N.P. Shah, Antioxidant and antibacterial activities of sulphated poly-
saccharides from Pleurotus eryngii and Streptococcus thermophilus ASCC 1275,
Food Chem. 165 (2014) 262
–
270,
https://doi.org/10.1016/j.foodchem.2014.05.
110
.
[11] B.-S. Teng, C.-D. Wang, H.-J. Yang, J.-S. Wu, D. Zhang, M. Zheng, et al., A protein
tyrosine phosphatase 1B activity inhibitor from the fruiting bodies of ganoderma
lucidum (Fr.) karst and its hypoglycemic potency on streptozotocin-induced type 2
diabetic mice, J. Agric. Food Chem. 59 (2011) 6492
–
6500,
https://doi.org/10.
1021/jf200527y
.
[12] P. Seedevi, M. Moovendhan, S. Viramani, A. Shanmugam, Bioactive potential and
structural chracterization of sulfated polysaccharide from seaweed (Gracilaria
corticata), Carbohydr. Polym. 155 (2017) 516
–
524,
https://doi.org/10.1016/j.
carbpol.2016.09.011
.
[13] O.S. Vishchuk, S.P. Ermakova, T.N. Zvyagintseva, Sulfated polysaccharides from
brown seaweeds Saccharina japonica and Undaria pinnati
fi
da: isolation, structural
characteristics, and antitumor activity, Carbohydr. Res. 346 (2011) 2769
–
2776,
https://doi.org/10.1016/j.carres.2011.09.034
.
[14] C. Zhuang, H. Itoh, T. Mizuno, H. Ito, Antitumor active fucoidan from the brown
seaweed, umitoranoo (Sargassum thunbergii), Biosci. Biotechnol. Biochem. 59
(1995) 563
–
567,
https://doi.org/10.1271/bbb.59.563
.
[15] M. Baba, R. Snoeck, R. Pauwels, E. de Clercq, Sulfated polysaccharides are potent
and selective inhibitors of various enveloped viruses, including herpes simplex
virus, cytomegalovirus, vesicular stomatitis virus, and human immunode
fi
ciency
virus, Antimicrob. Agents Chemother. 32 (1988) 1742
–
1745,
https://doi.org/10.
1128/AAC.32.11.1742
.
[16] M. Baba, D. Schols, R. Pauwels, H. Nakashima, E. De Clercq, Sulfated poly-
saccharides as potent inhibitors of HIV-induced syncytium formation: A new
strategy towards AIDS chemotherapy, JAIDS J. Acquir. Immune De
fi
c. Syndr. 3
(1990) 493
–
499,
https://doi.org/10.1097/00126334-199005000-00005
.
[17] S.S. Bandyopadhyay, M.H. Navid, T. Ghosh, P. Schnitzler, B. Ray, Structural fea-
tures and in vitro antiviral activities of sulfated polysaccharides from Sphacelaria
indica, Phytochemistry 72 (2011) 276
–
283,
https://doi.org/10.1016/j.phytochem.
2010.11.006
.
[18] T. Ghosh, K. Chattopadhyay, M. Marschall, P. Karmakar, P. Mandal, B. Ray, Focus
on antivirally active sulfated polysaccharides: From structure-activity analysis to
clinical evaluation, Glycobiology 19 (2008) 2
–
15,
https://doi.org/10.1093/glycob/
cwn092
.
[19] M. Ito, M. Baba, A. Sato, R. Pauwels, E. De Clercq, S. Shigeta, Inhibitory e
ff
ect of
dextran sulfate and heparin on the replication of human immunode
fi
ciency virus
(HIV) in vitro, Antiviral Res. 7 (1987) 361
–
367,
https://doi.org/10.1016/0166-
3542(87)90018-0
.
[20] M. Witvrouw, E. De Clercq, Sulfated polysaccharides extracted from sea algae as
potential antiviral drugs, Gen. Pharmacol. 29 (1997) 497
–
511,
https://doi.org/10.
1016/S0306-3623(96)00563-0
.
[21] F. Krichen, W. Karoud, A. Sila, B.E. Abdelmalek, R. Ghorbel, S. Ellouz-Chaabouni,
et al., Extraction, characterization and antimicrobial activity of sulfated poly-
saccharides from
fi
sh skins, Int. J. Biol. Macromol. 75 (2015) 283
–
289,
https://doi.
org/10.1016/j.ijbiomac.2015.01.044
.
[22] T. Marudhupandi, T.T.A. Kumar, Antibacterial e
ff
ect of fucoidan from Sargassum
wightii against the chosen human bacterial pathogens, Int. Curr. Pharm. J. 2 (2013)
156
–
158
http://www.icpjonline.com/documents/Vol2Issue10/01Abstract.htm?
.
[23] G. Pierre, V. Sopena, C. Juin, A. Mastouri, M. Graber, T. Maugard, Antibacterial
activity of a sulfated galactan extracted from the marine alga Chaetomorpha aerea
against Staphylococcus aureus, Biotechnol. Bioprocess Eng. 16 (2011) 937
–
945,
https://doi.org/10.1007/s12257-011-0224-2
.
[24] J. Marques, E. Vilanova, P.A.S. Mourão, X. Fernàndez-Busquets, A. Bros, A. Fischer,
Marine organism sulfated polysaccharides exhibiting signi
fi
cant antimalarial ac-
tivity and inhibition of red blood cell invasion by Plasmodium, Sci. Rep. 6 (2016)
24368,
https://doi.org/10.1038/srep24368
.
[25] T. Heinze, K. Petzold-Welcke, Recent advances in cellulose chemistry, in: Y. Habibi,
L.A. Lucia (Eds.), Polysacch. Build. Blocks A Sustain. Approach to Dev. Renew.
Biomater, 1st ed.,, John Wiley & Sons Inc, Hoboken, NJ, USA, 2012, pp. 1
–
50, ,
https://doi.org/10.1002/9781118229484.ch1
.
[26] I. Yamamoto, K. Takayama, K. Honma, T. Gonda, K. Matsuzaki, K. Hatanaka, et al.,
Synthesis, structure and antiviral activity of sulfates of cellulose and its branched
derivatives, Carbohydr. Polym. 14 (1990) 53
–
63,
https://doi.org/10.1016/0144-
8617(90)90006-E
.
[27] Z.M. Wang, L. Li, B.S. Zheng, N. Normakhamatov, S.Y. Guo, Preparation and an-
ticoagulation activity of sodium cellulose sulfate, Int. J. Biol. Macromol. 41 (2007)
376
–
382,
https://doi.org/10.1016/j.ijbiomac.2007.05.007
.
[28] R.A. Anderson, K.A. Feathergill, X.-H. Diao, M.D. Cooper, R. Kirkpatrick,
B.C. Herold, et al., Preclinical evaluation of sodium cellulose sulfate (Ushercell) as a
contraceptive antimicrobial agent, J. Androl. 23 (2002) 426
–
438,
https://doi.org/
10.1002/j.1939-4640.2002.tb02250.x
.
[29] Q.-X. Wu, Y.-X. Guan, S.-J. Yao, Sodium cellulose sulfate: A promising biomaterial
used for microcarriers
’
designing, Front. Chem. Sci. Eng. 13 (2019) 46
–
58,
https://
doi.org/10.1007/s11705-018-1723-x
.
[30] Q. Zhang, D. Lin, S. Yao, Review on biomedical and bioengineering applications of
cellulose sulfate, Carbohydr. Polym. 132 (2015) 311
–
322,
https://doi.org/10.
1016/j.carbpol.2015.06.041
.
[31] Z.-M. Wang, L. Li, K.-J. Xiao, J.-Y. Wu, Homogeneous sulfation of bagasse cellulose
in an ionic liquid and anticoagulation activity, Bioresour. Technol. 100 (2009)
1687
–
1690,
https://doi.org/10.1016/J.BIORTECH.2008.09.002
.
[32] T. Heinze, O.A. El Seoud, A. Koschella, Cellulose Esters, in: Cellul. Deriv. Synth.
Struct. Prop., 1st ed., Springer International Publishing, 2018: pp. 293
–
427. doi: 10.
1007/978-3-319-73168-1_5.
[33] N.S. Normakhamatov, A.S. Turaev, N.D. Burkhanova, Cellulose supramolecular
structure changes during chemical activation and sulfation 2nd ICC 2007, Tokyo,
Japan, October 25
–
29, Holzforschung 63 (2009) (2007) 40
–
46,
https://doi.org/10.
1515/HF.2009.008
.
[34] K. Zhang, D. Peschel, E. Bäucker, T. Groth, S. Fischer, Synthesis and characterisa-
tion of cellulose sulfates regarding the degrees of substitution, degrees of poly-
merisation and morphology, Carbohydr. Polym. 83 (2011) 1659
–
1664,
https://doi.
org/10.1016/j.carbpol.2010.10.029
.
[35] M. Gericke, T. Liebert, T. Heinze, Interaction of ionic liquids with polysaccharides,
8 - synthesis of cellulose sulfates suitable for polyelectrolyte complex formation,
Macromol. Biosci. 9 (2009) 343
–
353,
https://doi.org/10.1002/mabi.200800329
.
[36] D. Klemm, B. Philipp, U. Heinze, W. Wagenknecht, General Considerations on
Structure and Reactivity of Cellulose, in: Compr. Cellul. Chem. Vol. 1, Wiley-VCH
Verlag GmbH & Co. KGaA, Weinheim, 1998: pp. 9
–
165. doi: 10.1002/3527601929.
ch2a.
[37] W. Wagenknecht, B. Philipp, M. Keck, Zur Acylierung von Cellulose nach Au
fl
ösung
in O-basischen Lösemittelsysteme, Acta Polym. 36 (1985) 697
–
698,
https://doi.
org/10.1002/actp.1985.010361216
.
[38] K. Zhang, E. Brendler, A. Geissler, S. Fischer, Synthesis and spectroscopic analysis of
cellulose sulfates with regulable total degrees of substitution and sulfation patterns
via 13C NMR and FT Raman spectroscopy, Polymer (Guildf). 52 (2011) 26
–
32,
https://doi.org/10.1016/j.polymer.2010.11.017
.
[39] Z. Qin, L. Ji, X. Yin, L. Zhu, Q. Lin, J. Qin, Synthesis and characterization of bac-
terial cellulose sulfates using a SO3/pyridine complex in DMAc/LiCl, Carbohydr.
Polym. 101 (2014) 947
–
953,
https://doi.org/10.1016/j.carbpol.2013.09.068
.
[40] B. Muhitdinov, T. Heinze, N. Normakhamatov, A. Turaev, Preparation of sodium
cellulose sulfate oligomers by free-radical depolymerization, Carbohydr. Polym.
173 (2017) 631
–
637,
https://doi.org/10.1016/j.carbpol.2017.06.033
.
[41] L. Zhu, J. Qin, X. Yin, L. Ji, Q. Lin, Z. Qin, Direct sulfation of bacterial cellulose with
a ClSO 3 H/DMF complex and structure characterization of the sulfates, Polym.
Adv. Technol. 25 (2014) 168
–
172,
https://doi.org/10.1002/pat.3218
.
[42] A. Potthast, T. Rosenau, H. Sixta, P. Kosma, Degradation of cellulosic materials by
heating in DMAc/LiCl, Tetrahedron Lett. 43 (2002) 7757
–
7759,
https://doi.org/10.
1016/S0040-4039(02)01767-7
.
[43] D.H. Sieh, J.M. Dunham, Determination of active sulfur trioxide in sulfur trioxide-
pyridine and sulfur trioxide-trimethylamine complexes, Anal. Chem. 54 (1982)
1216
–
1217,
https://doi.org/10.1021/ac00244a051
.
[44] L. Chen, S. Lee, M. Renner, Q. Tian, N. Nayyar, A simple modi
fi
cation to prevent
side reactions in Swern-type oxidations using Py·SO3, Org. Process Res. Dev. 10
(2006) 163
–
164,
https://doi.org/10.1021/op0502203
.
[45] T. Heinze, T. Liebert, A. Koschella, Esteri
fi
cation of Polysaccharides, 1st ed.,
Springer-Verlag, Berlin/Heidelberg, 2006. doi: 10.1007/3-540-32112-8.
[46] N.V. Ivanova, E.A. Korolenko, E.V. Korolik, R.G. Zhbankov, IR spectrum of cellu-
lose, J. Appl. Spectrosc. 51 (1989) 847
–
851,
https://doi.org/10.1007/BF00659967
.
[47] K. Zhang, E. Brendler, S. Fischer, FT Raman investigation of sodium cellulose sul-
fate, Cellulose 17 (2010) 427
–
435,
https://doi.org/10.1007/s10570-009-9375-0
.
[48] R.G. Zhbankov, Infrared Spectra of Cellulose and its Derivatives, Springer US,
Boston, MA, 1995. doi: 10.1007/978-1-4899-2732-3.
[49] I. Nehls, W. Wagenknecht, B. Philipp, D. Stscherbina, Characterization of cellulose
and cellulose derivatives in solution by high resolution 13C-NMR spectroscopy,
Prog. Polym. Sci. 19 (1994) 29
–
78,
https://doi.org/10.1016/0079-6700(94)
90037-X
.
B. Muhitdinov, et al.
European Polymer Journal 119 (2019) 181–188
188
Document Outline - Homogenous synthesis of sodium cellulose sulfates with regulable low and high degree of substitutions with SO3/Py in N,N-dimethylacetamide/LiCl
- Introduction
- Experimental
- Materials
- Synthesis of SCS
- Characterization and measurements
- Results and discussion
- Synthesis of SCS
- Characterization
- Conclusions
- Acknowledgements
- References
Do'stlaringiz bilan baham: |