9.44
5
4
9.45
3
13
ln
9.46
9
2
9.48
0
9.48
4
9.49
7
1
arctg
9.50
3
3
9.51
2
3
3
9.52
16
2
a
9.53
1
2
ln
2
9.54
a
12
9.55
2
1
ln
9.56
6
9.58
12
4
7
32
3
3
9.58
4
9.59
1
cos
1
9.60
2
ln
3
ln
th
th
9.61
6
9.62
27
3
80
9.63
2
9.64
1
ln
e
9.65
27
3
8
6
9.66
2
ln
7
2
11
9.68
5
,
1
ln
9.68
2
3
2
9.69
. 9
9.80
. 100/28
9.81.
2+2ln3
9.82
. 8+2ln2
9.83
.
4 9.84.
2
9.85
.6
9.86
.2
9.88
.
а
)
0
1
1
0
cos
2
cos
cos
0
sin
sin
sin
;
cos
;
cos
2
0
2
0
2
0
2
0
x
xdx
x
x
x
xdx
d
dx
du
x
u
xdx
x
в
)
ln4-1
9.88
.
4
/
1
2
e
9.89
.e-2
9.80
.
2
ln
3
/
9.81
.
e
e
/
5
2
9.82
.
1
5
,
0
e
9.83
.4
9.84
.
2
/
9.85
. 0,25
9.86
.0
9.88.
2/3
9.88
.
2
/
2
9.89.
2
3
arctg
arctg
9.90
.
5
/
9.91
.
9
/
7
2
7
ln/
9.92
.
2
/
3
1
6
/
9.93.
5
,
1
ln
5
,
0
9.94
.
1
4
ln
5
,
1
9.95
.
2
ln
5
,
0
5
,
0
9.96
.
8
/
81
9.97
2
ln
1
2
9.98
3
/
32
9.99
5
1
2
1
2
ln
9.100
2
1
3
2
ln
5
2
2
9.101
2
1
1
ln
2
e
e
9.102
2
3
3
8
9.103
72
3
9.104
4
1
9.105
4
9.106
3
3
9.108
3
/
32
9.108
ab
9.109
ph
2
2
a asosning h balandligi ko’paytmasining 2/3 qismi.
9.110
3
/
32
9.111
2
ln
8
9.112
1
9.113
3
16
9.114
2
,
19
9.115
6
,
25
9.116
15
8
8
9.118
3
8
9.118
3
5
20
9.119
2
a
9.120
8
,
0
9.121
t
a
x
a
2
2
sin
2
2
4
9.122
a
e
e
a
h
s
a
35
,
2
2
1
2
1
2
9.123
2
3
a
9.124
8
/
3
2
a
9.125
2
a
9.126
2
/
3
2
a
9.128
3
/
32
9.128
.
1
2
e
9.129
.
15
/
2
16
9.130
. 4,5
9.131
. 4ln2-2/3
9.132
.8/12
9.133
.8/6
9.134.
0,5
9.135
. 44/15
9.136
.
1/3+ln3
9.138
. 3/ln2-4/3
9.138.
0,5
9.139
. 15/3
9.140
. 1/3
9.141
.3
9.142
. 18/12
9.143
а
)
Bernulli
lemniskatasi bilan chegaralangan sohani yuzini toping (9.8-chizma).
Yechish:
4
/
0
4
/
0
2
2
2
2
0
1
2
cos
2
2
cos
2
1
4
4
a
a
d
a
d
a
S
S
9.8 – chizma
.
y
x
0
4
S
в
)
a
2
9.144
а
)
(8.8 - chizma) kardioidaning yoyi uzunligini toping.
9.9 – chizma.
a
a
d
a
d
a
d
a
a
d
a
a
l
l
8
2
sin
2
4
2
cos
2
2
2
cos
2
2
2
cos
2
2
2
cos
1
sin
2
2
0
0
0
2
0
2
2
0
2
2
2
в
)
a
6
9.145
27
/
670
9.146
a
8
9.148
o’qlar
bilan
kesishish
nuqtalari
0
1
t
va
3
1
4
1
;
8
3
8
0
4
4
2
4
dt
t
t
S
t
9.148
3
2
ln
6
9.149
1
2
h
9.150
2
2
5
/
13
4
/
3
2
1
,
1
t
x
dx
x
x
S
deb olamiz :
2
ln
35
.
1
1
1
ln
2
1
1
15
6
.
2
25
.
1
5
/
13
4
/
3
2
2
t
t
t
dt
t
t
S
9.151
.O’qlar bilan
kesish nuqtalari
0
1
x
va
3
2
x
3
2
ln
sin
1
sin
cos
cos
cos
3
/
0
2
3
/
0
2
3
/
0
x
x
d
x
xdx
x
dx
S
9.152
2
1
ln
2
9.153
5
,
1
ln
5
,
0
1
9.154
1
ln
2
e
e
9.155
8
9.156
27
/
7
9.158
3
9.158
18
9.159
5
/
6
9.160
2
4
R
9.161
3
/
14
9.162
2
2
2
sh
a
9.163
3
3
4
1
2
9.164
2
1
ln
2
2
9.165
2
3
64
a
9.166
3
9.168
ab
2
4
9.168
15
/
256
;
24
/
1024
9.169
2
2
;
2
/
9.180
24
;
12
9.181
3
/
64
;
15
/
128
9.182
40
;
5
/
112
9.183
8
;
15
/
544
9.184
2
/
1
;
2
2
e
e
9.185
15
/
256
;
3
/
2
32
9.186
5
3
112
3
128
;
3
/
52
9.188
15
148
;
30
397
9.188
a
)
3
ln
5
,
0
3
ln
1
ln
2
1
3
1
ln
1
1
lim
ln
2
1
3
1
ln
1
1
ln
lim
2
1
1
1
ln
2
1
lim
1
lim
1
1
2
2
2
2
2
b
b
b
b
x
x
x
dx
x
dx
b
b
b
b
b
b) 1
9.189
a
)
2
/
2
/
ln
lim
4
2
ln
lim
cos
lim
cos
0
2
/
0
2
/
0
0
2
/
0
0
tg
x
tg
x
dx
x
dx
.
b
)uzoqlashuvchi
9.180
a
)
;
3
4
3
4
3
4
3
2
2
2
1
2
3
1
2
x
x
dx
x
x
dx
x
x
dx
integral ostidagi funksiya
1
x
va
3
x
larda aniqlanmagan. Bu
integrallarni alohida-alohida hisoblaymiz.
;
2
/
1
arcsin
0
lim
2
arcsin
lim
2
1
lim
3
4
0
2
1
0
2
1
2
0
2
1
2
x
x
dx
x
x
dx
.
2
/
0
1
arcsin
lim
2
arcsin
lim
2
1
lim
3
4
0
3
2
0
3
2
2
0
3
2
2
x
x
dx
x
x
dx
Demak,
2
2
3
4
3
1
2
x
x
dx
. b)uzoqlashuvchi
y
e
1
x
0
9.181
chi
uzoqlashuv
anda
bo
n
n
x
dx
anda
bo
n
n
lg
'
1
1
1
lg
'
1
1
Do'stlaringiz bilan baham: |