C++ Neural Networks and Fuzzy Logic: Preface


Y are an exemplar pair (in bipolar versions), you take the product X



Download 1,14 Mb.
Pdf ko'rish
bet199/443
Sana29.12.2021
Hajmi1,14 Mb.
#77367
1   ...   195   196   197   198   199   200   201   202   ...   443
Bog'liq
C neural networks and fuzzy logic

Y are an exemplar pair (in bipolar versions), you take the product X

T

 Y and add it to similar products from

other exemplar pairs, to get a weight matrix W. Some of the elements of the matrix W may be negative

numbers. In the unipolar context you do not have negative values and positive values at the same time. Only

one of them is allowed. Suppose you do not want any negative numbers; then one way of remedying the

situation is by adding a large enough constant to each element of the matrix. You cannot choose to add to only

the negative numbers that show up in the matrix. Let us look at an example.

Suppose you choose two pairs of vectors as possible exemplars. Let them be,

C++ Neural Networks and Fuzzy Logic:Preface

Additional Issues

176



X

1

 = (1, 0, 0, 1), Y



1

= (0, 1, 1)

and

X

2



 = (0, 1, 1, 0), Y

2

 = (1, 0, 1)



These you change into bipolar components and get, respectively, (1, –1, –1, 1), (–1, 1, 1), (–1, 1, 1, –1), and

(1, –1, 1). The calculation of W for the BAM was done as follows.

     1 [−1 1 1]   −1 [1 −1 1]  −1  1  1    −1  1 −1   −2  2 0

W = −1       + 1         =  1 −1 −1+1 −1  1 =  2 −2 0

    −1             1            1 −1 −1     1 −1  1    2 −2 0

     1            −1           −1  1  1    −1  1 −1   −2  2 0

and

                  −2    2    2   −2



W

T

 =    2   −2   −2    2



                   0    0    0    0

You see some negative numbers in the matrix W. If you add the constant m, m = 2, to all the elements in the

matrix, you get the following matrix, denoted by W

~

.

                   0    4    2



W

~

 =    4    0    2



                   4    0    2

                   0    4    2

You need a modification to the thresholding function as well. Earlier you had the following function.

      1  if y

j

 > 0   1   if  x



i

 > 0


      b

j

|



t+1

 = b


j

|

t



    if  y

j

 = 0   and      a



i

|

t+1



 = a

i

|



t

     if  x

i

 = 0


      0  if  y

j

 < 0  0   if  x



i

 < 0


Now you need to change the right−hand sides of the conditions from 0 to the product of m and sum of the

inputs of the neurons, that is to m times the sum of the inputs. For brevity, let us use S



i

 for the sum of the

inputs. This is not a constant, and its value depends on what values you get for neuron inputs in any one

direction. Then the thresholding function can be given as follows:

      1   if y

j

 > m S



i

         1  if  x

i

 > m S


i

b

j



|

t+1


 = b

j

|



t

      if  y

j

 = m S


i

       and      a

i

|

t+1



 = a

i

|



t

     if  x

i

 = m S


i

       0  if  y

j

 < m S


i

                         0  if  x

i

 < m S


i

For example, the vector X




Download 1,14 Mb.

Do'stlaringiz bilan baham:
1   ...   195   196   197   198   199   200   201   202   ...   443




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish