J
Jagota, 514
January effect, 380
Jurik, 381, 384, 392
K
Karhunen−Loev transform, 384
Katz, 377
Kimoto, 408
kohonen.dat file, 275, 298, 300, 317
Kohonen, 19, 116, 117, 245, 271, 303, 456
Kohonen feature map, 16, 271, 273, 303, 305, 323
conscience factor, 302
neighborhood size, 280, 299, 300
training law, 273
Kohonen layer, 9, 19, 82, 92, 106, 298, 302, 322
class, 276
Kohonen network, 275, 276, 280, 300, 303, 322
applications of, 302,
Kohonen output layer, 275
Kohonen Self−Organizing Map, 115, 456, 471, 472
Kosaka, 409,
Kosko, 49, 50, 104, 215, 242, 506
Kostenius, 408, 409
C++ Neural Networks and Fuzzy Logic:Preface
Index
440
Kronecker delta function 428, 524
L
lambda, 136, 433
late binding, 24
lateral, 93
lateral competition, 303
laterally connected, 65
lateral connections, 93, 97, 107, 272, 276
lateral inhibition, 272, 276
layer, 2, 81
C layer, 106
comparison, 244
complex layer, 106
F1, 244
F2, 244
Grossberg layer, 82, 92, 302
hidden layer, 75, 81, 86, 89
input layer, 2, 3, 82
Kohonen layer, 82, 92, 302, 322
middle layer, 329, 372
output layer, 2, 82
recognition, 244
S layer, 106
simple layer, 106
layout, 52, 86, 124
ART1, 244
BAM , 180
Brain−State−in−a−Box, 105
FAM, 219
Hopfield network, 11
for TSP, 427
LVQ, 117
Madaline model, 103
LBS Capital Management, 377
learning, 4, 74, 98, 109, 110, 117, 118
algorithm, 61, 79, 102, 118
cycle, 103
Hebbian, 105, 110
one−shot, 117
probabilistic, 113
rate(parameter), 111, 112, 123, 125, 127, 136, 175
supervised learning, 5, 110, 112, 117, 121
time, 120
unsupervised
competitive learning, 271
learning, 5, 110, 117, 121
Learning Vector Quantizer, 115−117, 302
least mean squared error, 111, 119, 123, 419
C++ Neural Networks and Fuzzy Logic:Preface
Index
441
rule, 111
Le Cun, 375
Lee, 512
Levenberg−Marquardt optimization, 373
Lewis, 377
Lin, 512
linear function, 99, 102
linear possibility regression model, 493, 496, 509
linear programming, 417
integer, 417
linearly separable, 83− 85
LMS see least mean squared error rule
local minimum, 113, 177, 325
logic
boolean logic, 50
fuzzy logic, 31, 34, 50, 473
logical operations, 31
AND, 64
logistic function, 86, 100
Long−term memory, 6, 77− 79, 118, 472
traces of, 243
look−up
memory, 5
table, 106
LTM see Long−term memory
LVQ see Learning Vector Quantizer
Lyapunov Function, 118, 119
M
MACD see moving average convergence divergence
Madaline, 102, 103
main diagonal, 63, 480
malignant melanoma, 514
malloc, 24
Mandelman, 378
MAPE see mean absolute percentage error
mapping, 123, 180
binary to bipolar, 62, 63
inverse, 62, 182
nonlinear, 109
real to binary, 180
mapping surface, 109
Markowitz, 470
Marquez, 406
Mason, 516
matrix, 97, 521
addition, 521
correlation matrix, 9
fuzzy, 217
C++ Neural Networks and Fuzzy Logic:Preface
Index
442
multiplication, 11
product, 104, 522
transpose, 11
weight matrix, 97
max_cycles, 326
maximum, 33, 219
max−min composition, 220, 221
McClelland, 103
McCulloch, 6
McNeill, 508
mean absolute percentage error, 406
mean squared error, 111, 410
Mears, 212, 214
membership, 32
functions, 50
triangular, 499, 506
rules, 49
memorization, 121, 320, 336, 382, 397
memorizing inputs, 273, 320
memory, 98
adaptive, 471
fuzzy associative, 218, 221
long−term memory, 6, 77−79, 118, 472
recency based, 471
short−term memory, 6, 77, 78, 79, 107, 118, 471
Mendelsohn, 407, 408
methods, 22, 145
metric, 5, 103
mexican hat function, 272, 273, 274, 276
middle layer, 329, 372
choosing size 372
minimum, 33, 219
global, 113, 177
local, 113, 177, 325
Minsky, 83
model
ART1, 245
continuous, 98
discrete, 98
Perceptron model, 65, 68, 81, 83
modulo, 423
Mohamed, 513
momentum, 325, 330, 337, 372, 400
implementing, 331
parameter, 119, 123, 134, 384
term, 330, 375
Morse, 514
Moss, 514
moving average convergence divergence, 401
moving averages, 380, 399
simple, 399
C++ Neural Networks and Fuzzy Logic:Preface
Index
443
weighted, 399
multilayered, 92
network, 106
multilayer feed−forward neural network, 7
multilayer networks, 123
multiple inheritance, 26
Munro, 374
N
NF see noise factor
NP−complete, 419, 427, 457
NYSE see New York Stock Exchange
Naim, 457
neighborhood, 276, 303, 457
size, 274, 280, 299, 300
neighbors, 272
Neocognitron, 81, 92, 106
Nellis, 516
NETTalk, 374
network
adaptive, 77
architecture, 77, 384, 388
autoassociative network, 97
backpropagation network, 329
bi−directional associative memory network, 104,, 88
Brain−State−in−a−Box network, 105
class, 53, 66
heteroassociative networks, 97
Hopfield network, 9, 11−14, 16, 19, 51, 79, 81, 82, 93, 111, 119, 120, 181, 472
layout, 86
modeling, 73
multilayer network, 123
nodes, 65
Perceptron network, 65, 66, 68, 79
radial basis function networks, 112, 114, 115
RBF networks see radial basis function networks
self−organizing , 269
statistical trained networks, 112
NeuFuz, 49
neural network, 1, 2
algorithms, 176
artificial neural network, 1
autoassociative, 375
biological, 272
counterpropagation, 302
fault tolerance of, 374
FAM, 218
hierarchical, 407
holographic, 408
C++ Neural Networks and Fuzzy Logic:Preface
Index
444
Kohonen, 271, 322
multilayer, 123
Perceptron, 65
plug−in boards, 325
self−organizing, 107, 269
Tabu, 471
two−layer, 92
neural−trained fuzzy systems, 49
neuromimes 2
neuron, 1, 3
input neurons, 82
output neuron, 99
new, 24, 144
Newton’s method, 373
New York Stock Exchange, 387
new highs, 389
new lows, 389
noise, 5, 330, 336, 337, 372, 375
random, 375
noise factor, 336
noise−saturation dilemma, 79
noise tolerance, 105
noisy data, 320
nonlinear function, 120
nonlinear mapping, 109
nonlinear scaling function, 10
nonlinear optimization, 417, 422, 472
nontraining mode, 135
Normal distribution, 524
normal fuzzy set, 218
normalization of a vector, 272
normalized inputs, 271, 381
normalized weights, 280
notation, 132
nprm parameter, 433
number bins, 43
NYSE see New York Stock Exchange
O
object, 22
objective function, 417
object−orientation, 21
object−oriented programming language, 21
Object−Oriented Analysis and Design, 21
on−balance volume, 402
on center, off surround, 97, 98
one−shot learning, 117
oneuron class, 66
Operations Research, 34
C++ Neural Networks and Fuzzy Logic:Preface
Index
445
operator overloading, 25, 139
optical character
recognition, 245
recognizer, 514
optimization, 102, 109, 417
nonlinear, 417, 422, 472
stock portfolio, 470
ordered pair, 32
organization of layers for backpropagation program, 144
orienting subsystem, 107, 243
orthogonal, 11, 12, 51, 64, 98
bit patterns, 64
input vectors, 299
set, 65
ostream, 58
output, 99
layer, 2, 10
nature of , 74
number of , 74
space, 124
stream, 58
outstar, 93, 106
overfitting of data, 383
overlap composition method, 506
overloading, 21, 24
function overloading, 25, 139
operator overloading, 25, 139
overtrained network, 329
P
Papert, 83
Parker, 103
partitioning, 87, 88
past_deltas, 331
Patil, 406
pattern
association, 16
binary pattern, 11, 97
bit pattern, 99
character, 17
classification, 8, 98, 109
completion, 105, 109
matching, 8, 98
recognition, 16, 34, 102, 108, 305, 322
studies, 380
system, 121
spatial, 99, 214
Pavlovian, 5
Perceptron, 3, 4, 66, 73, 82, 87, 90, 93, 102, 112
C++ Neural Networks and Fuzzy Logic:Preface
Index
446
model, 65, 68, 81, 83
multilayer Perceptron, 85, 88
network, 65, 66, 68, 79
single−layer Perceptron, 85
permutations, 420
Perry, 484
perturbation , 5, 113
phoneme, 303, 374
phonetic typewriter, 303
Pimmel, 513
Pitts, 6
pixel, 16, 322, 329, 374
values, 214, 305
plastic, 107
plasticity, 78, 79
plasticity−stability dilemma, 243
Pletta, 515
polymorphic function, 24, 28
polymorphism, 21, 24, 27, 138
Pomerleau, 374
portfolio selection, 470, 472
possibility distributions, 486, 487, 509
relational model, 486, 487
postprocess, 35
postprocessing, 50
filter , 50
potlpair class
in BAM network, 186
preprocess, 35, 50
preprocessing , 87, 379, 399
data, 389
filter, 50
fuzzifier, 35
Price is Right, 3, 65
principal component analysis, 384
private, 23, 26
probabilities, 31, 419
probability, 31, 43
distributions, 113
processing
additive, 75
hybrid, 75
multiplicative, 75
PROJECT operation, 485
proposition, 31
protected, 23, 26, 54, 143
public, 23, 26, 53, 54
Q
C++ Neural Networks and Fuzzy Logic:Preface
Index
447
quadratic form, 119, 120, 418
quadratic programming problem, 418
quantification, 473, 475
quantization levels, 322
queries, 475, 476, 488
fuzzy, 483, 488
R
radial basis function networks, 112, 114, 115
ramp function, 99, 101,, 102
Ramsay, 515
random number generator, 37
range, 394
normalized, 394, 395
rate of change, 392, 400, 404
function, 392
indicator, 393, 394
real−time recurrent learning algorithm, 515
recall, 7, 81, 184, 220
BAM , 184
FAM, 220, 221
recency based memory, 471
recognition layer, 244
recurrent, 13, 179
recurrent connections, 82, 107, 179
reference
activation level, 456
function, 493
regression analysis, 406
risk−adjusted return, 410
relations, 476
antisymmetric, 480, 481
reflexive, 480, 481
resemblance, 509
similarity, 481, 509
symmetric, 480, 481
transitive, 480, 481
relative strength index, 400, 404
remainder, 423
reset, 243, 247, 251, 262
reset node, 244
reset unit, 244
resonance, 104, 107, 117, 118, 181, 215, 243, 269
responsive exploration, 471
Ressler, 512
restrmax function, 251
return type, 23
reuse, 26
Robotics, 34
C++ Neural Networks and Fuzzy Logic:Preface
Index
448
ROC see rate of change
Rosenberg, 374
Ross, 517
row vector, 97, 104
RSI see relative strength index
rule
delta, 110, 111
generalized delta, 112
Hebbian, 111
Hebb’s, 110
rules
fuzzy rules, 50
Rumbaugh, 21
Rummelhart, 103
S
SP500 Index see Standard and Poor’s 500 Index
Sathyanarayan Rao, 515
saturate, 381
scalar, 61
scalar multiplier, 64
second derivative, 380
Sejnowski, 114, 374
self−adaptation, 115
self−connected, 53
self−organization, 5, 6, 74, 115, 116
self−organizing feature map, 116
Self−Organizing Map, 245, 271
self−organizing neural networks, 107, 117, 121
self−supervised backpropagation, 375
sensitivity analysis, 384
separable, 84, 86, 88
linearly separable, 83, 84
subsets, 87
separability, 84, 86
separating
line, 86
plane, 85
Sethuraman, 515
set membership, 32
Sharda, 406
shift operator, 25
Short Term Memory, 6, 77, 78, 79, 107, 118, 471
traces of, 243
Sigma Pi neural network , 75
sigmoid
activation function, 381, 387
function, 77, 99, 126, 129, 133, 164, 177, 395
squashing, 381
C++ Neural Networks and Fuzzy Logic:Preface
Index
449
signal filtering, 102
signals
analog, 98
similarity, 486
class, 481, 509
level, 486
relation, 481
simple cells, 106
simple moving average, 399
simulated annealing, 113, 114
simulator, 372, 396
controls, 173
mode, 138
Skapura, 246, 248
Slater, 515
S layer, 106
SMA see simple moving average
SOM see Self−Organizing Map
sonar target recognition, 374
spatial
pattern, 99, 214
temporal pattern, 105,
speech
recognition, 303,
synthesizer, 374,
spike, 380
squared error, 103
squashing
function, 384, 458, 459
stable, 79, 107
stability 78, 79, 118
and plasticity, 77
stability−plasticity dilemma, 79, 107,, 269
STM see Short Term Memory
Standard and Poor’s 500 Index, 377, 378
forecasting, 386
standard I/O routines, 519
state energy, 118
state machine, 48
static binding, 139
Steele, 514
steepest descent, 112, 113, 177, 373
step function, 99, 101
stochastics, 402, 404
Stoecker, 514
Stonham, 516
string
binary, 62
bipolar, 62
structure, 7, 7
subsample, 322
C++ Neural Networks and Fuzzy Logic:Preface
Index
450
subset, 221
subsystem
attentional, 107, 243
orienting, 107, 243
Sudjianto, 516
summand, 422
summation symbol, 422
supervised , 109
learning, 5, 110, 112, 115, 117, 121
training 94, 110, 115, 121, 125
Sweeney , 516
symbolic approach, 6
T
TSR see Terminate and Stay Resident
Tabu , 471
active, 471
neural network, 471
search, 471, 472
Tank, 422, 427, 429
target 378, 395
outputs, 110, 115
patterns, 105
scaled, 395
tau, 433
technical analysis, 399
temperature, 118
Temporal Associative Memory, 92
Terano, 496
Terminate and Stay Resident programs, 519
terminating value, 298
termination criterion, 322
test.dat file, 327, 328
test mode, 135, 137, 138, 164, 173, 327, 396
Thirty−year Treasury Bond Rate, 387
Three−month Treasury Bill Rate, 387
threshold
function, 2, 3, 12, 17, 19, 52, 95, 99, 101, 125, 183
value, 16, 52, 66, 77, 86, 87, 90, 101, 128, 456
thresholding, 87, 185
function, 133, 177, 182, 184, 214
Thro, 508
Tic−Tac−Toe, 76, 79
time lag, 380
time series forecasting, 406, 410
time shifting, 395
timeframe, 378
tolerance, 119, 125, 173, 245, 318, 322, 328, 329, 372
level, 78, 123
C++ Neural Networks and Fuzzy Logic:Preface
Index
451
value, 119
top−down
connection weight , 248
connections, 107, 244
top−down inputs, 247
topology, 7
Topology Preserving Maps, 116
tour, 420
traces, 243
of STM, 243
of LTM, 243
trading
commodities, 405,
system, 378
dual confirmation, 408
training, 4, 74, 75, 98, 109, 110, 119, 181, 396
fast, 107
law, 272, 273, 274, 330, 333
mode, 135, 137, 138, 164, 173, 396
supervised, 94, 110, 115
slow, 107
time, 329
unsupervised, 107, 110
transpose
of a matrix, 11, 179, 181, 183
of a vector, 11, 63, 97, 181
traveling salesperson(salesman) problem, 118, 119, 419
hand calculation, 423
Hopfield network solution−Hopfield, 427
Hopfield network solution−Anzai, 456
Kohonen network solution, 456
triple, 217
truth value, 31
tsneuron class, 430
TS see Tabu search
TSP see traveling salesperson problem
turning point predictor, 409
turning points, 407
two−layer networks, 92
two−thirds rule, 107, 244, 245, 269
U
Umano, 486
Unemployment Rate, 387
undertrained network, 329
uniform distribution, 77
union, 32
Unipolar Binary Bi−directional Associative Memory, 212
unit
C++ Neural Networks and Fuzzy Logic:Preface
Index
452
circle, 299
hypercube, 218
unit length, 273
universal set, 33
universe of discourse, 498, 499
unsupervised , 107
competitive learning, 271
learning, 5, 110, 115, 117, 121
training, 107, 110
V
value
fit value, 32
threshold value, 16, 52, 66, 77, 86, 87, 90, 101, 128, 456
variable
external, 28
global, 28
vector, 17
codebook vectors, 116
column vector, 97, 104, 181
fit vector, 32, 33
heterassociated, 181
input vector, 53, 71, 272, 112
normalization of, 272
potentially associated, 181
quantization, 302
row vector, 97, 181
weight vector, 9, 96
vector pairs, 181
vertex, 88
vertices, 88
vigilance parameter, 107, 243, 245, 247, 262
virtual, 24, 139
trading, 377
visibility, 26
visible, 53
W
walk−forward methodology, 408
Wall Street Journal, 388
Wasserman, 516
weight matrix, 9, 17, 51, 65, 97, 181, 183
weight sharing, 375
weight surface, 113
weight update, 276
weight vector, 9, 96
quantizing, 307
C++ Neural Networks and Fuzzy Logic:Preface
Index
453
weighted sum, 2, 3, 19, 271
weights , 4, 181
bottom−up, 250
connection , 89, 98
top−down, 250
Werbos, 103
Wetherell, 514
Widrow, 102, 112
winner indexes, 298
winner, 98
neuron, 323
winner−take−all, 97, 98, 115, 116, 243, 271, 274
World Wide Web, 388
Wu, 515
X
XOR function, 83−85, 87
Y
Yan, 473, 497
Yu, 212, 214
Yuret, 410
Z
zero pattern, 65
zero−one programming problem, 471
Zipser, 374
Table of Contents
Copyright ©
IDG Books Worldwide, Inc.
C++ Neural Networks and Fuzzy Logic:Preface
Index
454
Do'stlaringiz bilan baham: |