Machine Learning: 2 Books in 1: Machine Learning for Beginners, Machine Learning Mathematics. An Introduction Guide to Understand Data Science Through the Business Application



Download 1,94 Mb.
Pdf ko'rish
bet80/96
Sana22.06.2022
Hajmi1,94 Mb.
#692449
1   ...   76   77   78   79   80   81   82   83   ...   96
Bog'liq
2021272010247334 5836879612033894610

h
 F
S
(h)”, and ensures that the expected value of “F(hˆ
S
)” converges to the
optimal value “F

= inf 
h
 F(h)”.
Although dependency on "h" is nonlinear, uniform convergence can still be
established with the use of "covering number arguments" provided "H" is
a finite dimension. Regrettably, uniform convergence may not take place if
we go to infinite-dimensional hypothesis and empirical minimization may


not make impart the ability to learn to the algorithm. Remarkably, this does
not mean that the problem can be deemed "unlearnable". It can
be shown that with regularization mechanisms, even when uniform
convergence doesn't exist, a learning algorithm can be developed to solve
any "stochastic convex optimization" issue. This mechanism directly relates
to the principle of stability. For example, let’s look at the “convex stochastic
optimization” problem given by the equation in the picture below, where for
this example “H” will be the “d-dimensional unit sphere h

R: | h|
≤1”, “z=(x,α) with α 

[0, 1]d” and “

H” , and “u 

 v” can be defined
as an element-wise product. 
Now, considering a series of learning problems, where “d = 2
m
for any
sample size “m”, and establishing that a “convergence rate independent of
the dimensionality ‘d’ cannot be expected”. This case can be formalized
into infinite dimensions. The learning problem in the equation above can be
considered as “that of finding the center of an unknown distribution over x

 Rd, where stochastic per-coordinate confidence measures “α[i]” are also
available”. For now, we will be focusing on the scenario wherein certain
coordinates are missing, meaning “α[i] = 0”.
By taking into consideration the distribution given below over “(x, α): =
0” with probability as 1, and “α” is uniform over “{0, 1}
d
. That is, “α[i]”
are independent and identically distributed uniform “Bernoulli”. For a
random sample “(x

Download 1,94 Mb.

Do'stlaringiz bilan baham:
1   ...   76   77   78   79   80   81   82   83   ...   96




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish