Machine Learning: 2 Books in 1: Machine Learning for Beginners, Machine Learning Mathematics. An Introduction Guide to Understand Data Science Through the Business Application


part of the optimization and statistical learning problems that are widely



Download 1,94 Mb.
Pdf ko'rish
bet76/96
Sana22.06.2022
Hajmi1,94 Mb.
#692449
1   ...   72   73   74   75   76   77   78   79   ...   96
Bog'liq
2021272010247334 5836879612033894610


part of the optimization and statistical learning problems that are widely
popular, such as:
Stochastic Convex Optimization in Hilbert Spaces: “Let ‘Z’ be an
arbitrary measurable set, let ‘H’ be a closed, convex, and bounded subset of
a Hilbert space, and let ‘f(h;z)’ be Lipschitz-continuous and convex w.r.t. its
first argument. Here, we want to approximately minimize the objective
function ‘Ez

D [f(h;z)]’, where the distribution over ‘Z’ is unknown, based
on an empirical sample z
1
,...,z
m
”.
Density Estimation: “Let ‘Z’ be a subset of ‘Rn’, let ‘Hbe a set of
bounded probability densities on ‘Z’, and let ‘f (h; z) = − log(h(z))’. Here, ‘f
(·)’ is simply the negative log-likelihood of an instance z according to the
hypothesis density ‘h’. Note that to ensure bounded-ness of ‘f (·)’, we need
to assume that ‘h(z)’ is lower bounded by a positive constant for all ‘

Z’”.
K-Means Clustering in Euclidean Space: “Let Z = R
n
, let ‘H’ be all
subsets of Rn of size k, and let ‘f (h; z) = min
c

h ||c – z||
2’
Here, each h
represents a set of ‘k centroids’, and ‘f (·)’ measures the Euclidean distance
squared between an instance z and its nearest centroid, according to the
hypothesis h”.


Large Margin Classification in a Reproducing Kernel Hilbert Space
(RKHS): “Let ‘Z=X×{0,1}’, where ‘X’ is a bounded subset of an RKHS, let
H’ be another bounded subset of the RKHS, and let ‘f (h; (x, y)) = max{0,
1 − y

x, h

}’. Here, ‘f (·)’ is the popular hinge loss function, and our goal
is to perform margin-based linear classification in the RKHS”.
Regression: “Let ‘Z = X × Y’ where ‘X’ and ‘Y’ are bounded subsets of ‘R
n

and ‘R’ respectively, let ‘H’ be a set of bounded functions ‘h : X

→ R’, and
let ‘f(h;(x,y)) = (h(x)−y)
2
’. Here, ‘f(·)’ is simply the squared loss function”.

Download 1,94 Mb.

Do'stlaringiz bilan baham:
1   ...   72   73   74   75   76   77   78   79   ...   96




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish