Machine Learning: 2 Books in 1: Machine Learning for Beginners, Machine Learning Mathematics. An Introduction Guide to Understand Data Science Through the Business Application



Download 1,94 Mb.
Pdf ko'rish
bet79/96
Sana22.06.2022
Hajmi1,94 Mb.
#692449
1   ...   75   76   77   78   79   80   81   82   ...   96
Bog'liq
2021272010247334 5836879612033894610

h:(h)≥c
 F
S
(h) − m→∞→ inf 
h:(h)≥c
 F(h)”
The thought is that the empirical risk of “ERM” is essential for convergence
of the smallest potential risk, even once the “good” hypotheses with less
risk than the threshold have been removed. Vapnik succeeded in proving
that such “strict consistency” of the ERM has real equivalence to uniform
convergence, of the form in probability. The equivalence below is true for
every individual distribution and is independent of the universal consistency
of the “Empirical Risk Minimizer”.
“sup 
h


( F ( ) − F
S
 ( ) ) − m→∞→ 0”
Based on this research study, it can be implied that “up to trivial situations,
a uniform convergence property indeed characterizes learnability, at least
using the ERM learning rule”.


Learnability without Uniform Convergence
A “stochastic convex optimization” or learnability without uniform
convergence problem can be considered an exceptional case of the “General
Learning Setting” explained above, including additional limitations that
“the objective function f(h;z) is Lipschitz-continuous and convex in h for
every z, and that is closed, convex and bounded”. The problems where
H” is a subset of a “Hilbert space” will be addressed here. An exceptional
scenario is “the familiar linear prediction setting, where z = (x, y) is an
instance-label pair, each hypothesis h belongs to a subset H of a Hilbert
space, and f (hx, y) = l(

h, φ(x)

, y) for some feature mapping φ and a
loss function l : R × Y → R, which is convex with respect to its first
argument”.
The scenario has been successfully established where the stochastic
dependence on “h” is linear, similar to the previous example, has been
established successfully. When the “domain H” and the “mapping φ” is
bounded, there is uniform convergence, meaning that “|(h) − F
S
 (h)|” is
uniformly bounded overall “

H”. This uniform convergence of “F
S
(h)
to F(h)” validates selection of the empirical minimizer “hˆ=arg min

Download 1,94 Mb.

Do'stlaringiz bilan baham:
1   ...   75   76   77   78   79   80   81   82   ...   96




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish