Machine Learning: 2 Books in 1: Machine Learning for Beginners, Machine Learning Mathematics. An Introduction Guide to Understand Data Science Through the Business Application



Download 1,94 Mb.
Pdf ko'rish
bet68/96
Sana22.06.2022
Hajmi1,94 Mb.
#692449
1   ...   64   65   66   67   68   69   70   71   ...   96
Bog'liq
2021272010247334 5836879612033894610

5. 
Model Training
The model pipelines are always "offline", and its schedule will vary from
a matter of few hours to just one run per day, based entirely on the
complexity of the application. The training can also be initiated by time and
event, and not just by the system schedulers.
It includes many libraries of machine learning algorithms such as "linear
regression, ARIMA, k-means, decision trees" and many more, which are
designed to make provisions for rapid production of new model types as
well as making the models interchangeable. Containment is also important
for the integration of "third-Party APIs" using the "facade pattern" (at this
stage the "Python Jupyter notebook" can also be called).
You have several choices for "parallelization":
A specialized pipeline for individual models tends to be the
easiest method, which means all the models can be operated at
the same time.
Another approach would be to duplicate the training dataset, i.e.
the dataset can be divided and each data set will contain a replica
of the model. This approach is favored for the models
that require all fields of an instance for performing the
computations, for example, "LDA", 'MF".
Another approach can be to parallelize the entire model,
meaning the model can be separated and every partition can be
responsible for the maintenance of a fraction of the variables.


This approach is best suited for linear machine learning models
like "Linear Regression", "Support Vector Machine".
Lastly, a hybrid strategy could also be utilized by leveraging a
combination of one or more of the approaches mentioned above.

It is important to implement train the model while taking error tolerance
into consideration. The data checkpoints and failures on training partitions
must also be taken into account, for example, if every partition fails to owe
to some transient problem like timeout, then every partition could be trained
again.

Download 1,94 Mb.

Do'stlaringiz bilan baham:
1   ...   64   65   66   67   68   69   70   71   ...   96




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish