Machine Learning: 2 Books in 1: Machine Learning for Beginners, Machine Learning Mathematics. An Introduction Guide to Understand Data Science Through the Business Application



Download 1,94 Mb.
Pdf ko'rish
bet66/96
Sana22.06.2022
Hajmi1,94 Mb.
#692449
1   ...   62   63   64   65   66   67   68   69   ...   96
Bog'liq
2021272010247334 5836879612033894610

3. 
Data Preparation
After the information has been ingested, a centralized pipeline would be
produced that can evaluate the condition of the data, meaning it
would search for format variations, outliers, patterns, inaccurate,
incomplete or distorted information and correct any abnormalities through
the process. The "feature engineering process" is also included in this stage.
The 3 primary characters of a feature pipeline as depicted in the picture
below are: "extraction, transformation, and selection".


Since this tends to be the most complicated component of any machine
learning project, it is essential to introduce appropriate design patterns. In
the context of coding, it implies the use of a factory technique to produce
features based on certain shared abstract function behavior and a strategy
pattern for selecting the correct features at the time of execution can be
considered a logical approach. It is important to take into consideration the
composition and re-usability of the pipeline while structuring the "feature
extractors" and the "transformers".
The selection of functionalities could be attributed to the caller or could be
automated. For instance, a "chi-square statistical test" can be applied to
classify the impact of each function on the concept label, while discarding
the low impact features before starting to train the model. To accomplish
this, some "selector APIs" can be identified. In any case, a unique Id must
be allocated to each feature set to make sure that the features used as model
inputs and for impact scoring are consistent. Overall, it is necessary to
assemble a data preparation pipeline into a set of unalterable
transformations, which could be readily combined. Now the importance of
"testing and high code coverage" will become a critical factor in the success
of the model.

Download 1,94 Mb.

Do'stlaringiz bilan baham:
1   ...   62   63   64   65   66   67   68   69   ...   96




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish