Machine Learning: 2 Books in 1: Machine Learning for Beginners, Machine Learning Mathematics. An Introduction Guide to Understand Data Science Through the Business Application


Training approaches for Neural Network



Download 1,94 Mb.
Pdf ko'rish
bet69/96
Sana22.06.2022
Hajmi1,94 Mb.
#692449
1   ...   65   66   67   68   69   70   71   72   ...   96
Bog'liq
2021272010247334 5836879612033894610

Training approaches for Neural Network
Similar to most of the traditional machine learning models, Neural
Networks can be trained using supervised and unsupervised learning
algorithms as described below:
Supervised Training
Both inputs and outputs are supplied to the machine as part of
the supervised training effort. Then the network will process the inputs and
compare the outputs it generated to the expected outputs. Errors will then be
propagated back through the model, resulting in the model adjusting the
weights that regulate the network. This cycle is repeated time and again
with the weights constantly changing. The data set enabling the learning is
called the "training set". The same data set is processed several times while


the weights of a relationship are constantly improved through the course
of training of a network.
Current business network development packages supply resources for
monitoring the convergence of an artificial neural network on its capacity to
forecast the correct result. These resources enable the training routine to
continue for days only until the model reaches the required statistical level
or precision. Some networks, however, are incapable of learning. This could
be due to the lack of concrete information in the input data from which the
expected output is obtained. Networks will also fail to converge if sufficient
quantity and quality of the data are not available to confer complete
learning. In order to keep a portion of the data set for testing, a sufficient
volume of the data set must be available. Most multi-node layered networks
can memorize and store large volumes of data. In order to monitor the
network to determine whether the system merely retains the training data in
a manner that has no significance, supervised learning requires a set of data
to be saved and used to evaluate the system once it has been trained.
To avoid insignificant memorization number of the processing elements sho
uld be reduced. If a network can not simply resolve the issue, the developer
needs to evaluate the inputs and outputs, the number of layers and its
elements, the links between these layers, the data transfer and training
functionalities, and even the original input weights. These modifications
that are needed to develop an effective network comprise the approach in
which the "art" of neural networking plays out. Several algorithms are
required to provide the iterative feedback needed for weight adjustments,
through the course of the training. The most popular technique used is
"backward-error propagation", more frequently referred to as "back-
propagation". To ensure that the network is not "overtrained", supervised


training must incorporate an intuitive and deliberate analysis of the model.
An artificial neural network is initially configured with current statistical
data trends. Subsequently, it needs to continue to learn other data aspects
that could be erroneous from a general point of view. If the model
is properly trained and no additional learning is required, weights may be
"frozen", if needed. In some models, this completed network is converted
into hardware to increase the processing speed of the model. Certain
machines do not lock in but continue learning through its use in the
production environment.

Download 1,94 Mb.

Do'stlaringiz bilan baham:
1   ...   65   66   67   68   69   70   71   72   ...   96




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish