The McGraw-Hill Series Economics essentials of economics brue, McConnell, and Flynn Essentials of Economics


Therefore, models like (6.7.1) have built in them an  asymptote



Download 5,05 Mb.
Pdf ko'rish
bet176/868
Sana20.06.2022
Hajmi5,05 Mb.
#684913
1   ...   172   173   174   175   176   177   178   179   ...   868
167
Therefore, models like (6.7.1) have built in them an 
asymptote
or limit value that the de-
pendent variable will take when the value of the 
X
variable increases indefinitely.
20 
Some
likely shapes of the curve corresponding to Eq. (6.7.1) are shown in Figure 6.6.
20
The slope of Eq. (6.7.1) is: 
dY
/
d X
= −
β
2
(1
/
X
2
), implying that if 
β
2
is positive, the slope is
negative throughout, and if 
β
2
is negative, the slope is positive throughout. See Figures 6.6
a
and 6.6
c, 
respectively.
Y
X
0
β
2
> 0
β
β
1
> 0
β
β
1
(
a
)
β
Y
X
0
β
2
< 0
β
β
1
(
c
)
β
Y
X
0
β
2
> 0
β
β
1
< 0
β

β
1
(
b
)
β

β
2
β
β
1
β
FIGURE 6.6
The reciprocal model: 
Y
=
β
1
+
β

1
X
.
EXAMPLE 6.6
As an illustration of Figure 6.6
a
, consider the data given in Table 6.4. These are cross-
sectional data for 64 countries on child mortality and a few other variables. For now, con-
centrate on the variables child mortality (CM) and per capita GNP, which are plotted in
Figure 6.7.
As you can see, this figure resembles Figure 6.6
a
: As per capita GNP increases, one
would expect child mortality to decrease because people can afford to spend more on
health care, assuming all other factors remain constant. But the relationship is not a
straight line one: As per capita GNP increases, initially there is a dramatic drop in CM but
the drop tapers off as per capita GNP continues to increase.
0
0
5000
10000
PGNP
15000
20000
100
200
Child Mortality and PGNP
CM
300
400
FIGURE 6.7
Relationship between
child mortality and
per capita GNP in
66 countries.
(
Continued
)
guj75772_ch06.qxd 07/08/2008 07:00 PM Page 167


168
Download 5,05 Mb.

Do'stlaringiz bilan baham:
1   ...   172   173   174   175   176   177   178   179   ...   868




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish