12.92)
...
1
1
...
2
1
2
1
1
1
2
2
2
n
12.93)
...
3
1
2
...
3
3
3
1
2
n
n
12.94)
...
1
...
2
1
1
2
n
arctg
arctg
arctg
n
Ishorasi almashinuvchi va o’zgaruvchan ishorali sonli
qatorlar. Leybnits teoremasi. Absolyut va shartli
yaqinlashuvchi qatorlar.
Quyida keltirilgan qatorlarni qaysi biri absolyut yaqinlashuvchi, yaqinlashuvchi va uzoqlashuvchi.
12.95.
...
1
2
1
1
...
3
1
1
1
n
n
12.96.
...
1
2
1
1
...
3
1
1
3
1
3
n
n
12.97.
...
1
2
1
1
...
2
1
3
1
n
n
12.98.
...
sin
...
4
2
sin
1
sin
2
n
n
12.99.
...
2
1
1
1
...
2
1
2
1
2
1
1
2
n
n
n
12.100.
...
1
1
...
2
3
2
1
n
n
n
12.101.
...
1
1
...
2
1
1
n
n
12.102.
...
2
1
...
4
8
2
1
3
1
n
n
n
12.103.
1
ln
1
n
n
n
n
12.104.
1
1
!
2
1
2
n
n
n
n
Garmonik qator kamayuvchi progressiya bilan taqqoslab, quyidagilarning yaqinlashishi tekshirilsin.
12.105.
...
4
1
3
1
2
1
1
12.106.
...
5
4
1
5
3
1
5
2
1
1
3
2
12.107.
...
5
ln
1
4
ln
1
3
ln
1
2
ln
1
12.108. Qatorlarni
taqqoslash usuli bilan
...
1
1
1
1
1
1
6
4
2
x
x
x
qatorning
1
x
bo’lganda
uzoqlashishi,
1
x
bo’lganda esa yaqinlashishi ko’rsatilsin.
12.109.
...
4
3
1
3
2
1
2
1
1
qatorning yig’indisi topilsin.
12.110.
...
10
7
1
7
4
1
4
1
1
qatorning yig’indisi topilsin.
Quyidagi qatorlarning yaqinlashishi tekshirilsin:
12.112.
...
4
1
3
1
2
1
1
12.112.
...
7
1
5
1
3
1
1
2
2
2
12.113.
...
4
ln
4
1
3
ln
3
1
2
ln
2
1
12.114.
...
3
3
sin
2
2
sin
1
sin
2
2
12.115.
...
5
5
1
3
3
1
1
12.116.
...
301
1
201
1
101
1
1
12.117.
...
3
1
3
2
1
2
1
1
1
4
4
4
12.118.
...
16
7
9
5
4
3
1
12.119.
...
10
1
7
1
4
1
1
2
2
2
12.120.
...
2
7
2
5
2
3
2
1
4
3
2
12.121.
...
27
61
9
41
3
21
12.122.
...
!
5
6
!
3
4
1
2
12.123.
...
5
1
3
1
1
12.124.
...
4
1
3
1
2
1
1
3
3
3
12.125.
...
4
4
3
1
2
1
1
6
4
2
a
a
a
12.126.
1
2
1
ln
3
2
1
n
n
n
12.127.
...
3
1
9
2
1
4
1
3
2
arctg
arctg
arctg
“С” guruh
12.127.b) Shartli
yaqinlashuvchi
...
1
...
4
1
3
1
2
1
1
3
3
3
3
n
n
qatorni kvadratga oshirilsa yaqinlashuvchi
bo’ladimi?
12.128.
...
!
2
2
2
1
...
!
4
2
!
2
2
1
...
!
1
2
1
...
!
5
!
3
2
1
2
2
4
2
2
1
2
1
5
3
n
x
x
x
n
x
x
x
x
n
n
n
n
tenglik o’rinli ekanligini isbotlang.
12.129.
1
...
!
1
2
1
...
!
5
!
3
...
!
2
2
1
...
!
4
!
2
1
2
1
2
1
5
3
2
2
2
4
2
n
x
x
x
x
n
x
x
x
n
n
n
n
tenglik o’rinli ekanligini isbotlang.
12.130. Faraz qilaylik,
x
f
y
funksiya
;
1
musbat va monoton kamayuvchi bo’lsin. U holda
A
dx
x
f
n
f
f
n
n
1
...
1
lim
limit mavjud va
n
n
A
d
x
f
n
f
f
1
...
1
(
0
lim
n
n
)
ekanligini isbotlang.
12.131.
0
,
ln
1
...
2
1
1
n
n
C
n
n
ekanligini isbotlang. Bu tenglikdan
quyidagini keltirib
chiqaring.
0
,
2
1
4
ln
1
2
1
...
5
1
3
1
1
n
n
C
n
n
12.132.
...
7
1
5
1
3
1
1
4
munosabat va (12.130) masalani shartidan foyadalanib quyidagini isbotlang.
0
,
4
8
8
ln
3
4
1
...
9
1
5
1
1
4
k
k
C
k
n
Do'stlaringiz bilan baham: