The answer to this question depends on what we mean by the word "computer." Most computers today are all digital
and perform one (or perhaps a few) computations at a time at extremely high speed. In contrast, the human brain
combines digital and analog methods but performs most computations in the analog (continuous) domain, using
neurotransmitters and related mechanisms. Although these neurons execute calculations at
extremely slow speeds
(typically two hundred transactions per second), the brain as a whole is massively parallel: most of its neurons work at
the same time, resulting in up to one hundred trillion computations being carried out simultaneously.
The massive parallelism of the human brain is the key to its pattern-recognition ability, which is one of the pillars
of our species' thinking. Mammalian neurons engage in a chaotic dance (that is,
with many apparently random
interactions), and if the neural network has learned its lessons well, a stable pattern will emerge, reflecting the
network's decision. At the present, parallel designs for computers are somewhat limited. But
there is no reason why
functionally equivalent nonbiological re-creations of biological neural networks cannot be built using these principles.
Indeed, dozens of efforts around the world have already succeeded in doing so. My own technical field is pattern
recognition, and the projects that I have been involved in for about forty years use this form of trainable and
nondeterministic computing.
Many of the brain's characteristic methods of organization can also be effectively simulated using conventional
computing of sufficient power. Duplicating the design paradigms
of nature will, I believe, be a key trend in future
computing. We should keep in mind, as well, that digital computing can be functionally equivalent to analog
computing—that is, we can perform all of the functions of a hybrid digital-analog network with an all-digital
computer. The reverse is not true: we can't simulate all of the functions of a digital computer with an analog one.
However, analog computing does have an engineering advantage: it is potentially thousands of times more
efficient. An analog computation can be performed by a few transistors or, in the
case of mammalian neurons, specific
electrochemical processes. A digital computation, in contrast, requires thousands or tens of thousands of transistors.
On the other hand, this advantage can be offset by the ease of programming (and modifying) digital computer-based
simulations.
There are a number of other key ways in which the brain differs from a conventional computer:
•
Do'stlaringiz bilan baham: