Microsoft Word Kurzweil, Ray The Singularity Is Near doc



Download 13,84 Mb.
Pdf ko'rish
bet71/303
Sana15.04.2022
Hajmi13,84 Mb.
#554549
1   ...   67   68   69   70   71   72   73   74   ...   303
Bog'liq
Kurzweil, Ray - Singularity Is Near, The (hardback ed) [v1.3]

Building Models of the Brain 
If we were magically shrunk and put into someone's brain while she was thinking, we would see all the 
pumps, pistons, gears and levers working away, and we would be able to describe their workings completely, 
in mechanical terms, thereby completely describing the thought processes of the brain. But that description 
would nowhere contain any mention of thought! It would contain nothing but descriptions of pumps, pistons, 
levers! 
—G.
W.
L
EIBNIZ 
(1646–1716) 
How do ... fields express their principles? Physicists use terms like photons, electrons, quarks, quantum wave 
function, relativity, and energy conservation. Astronomers use terms like planets, stars, galaxies, Hubble 
shift, and black holes. Thermodynamicists use terms like entropy, first law, second law, and Carnot cycle. 
Biologists use terms like phylogeny, ontogeny, DNA, and enzymes. Each of these terms is actually the title of 


a story! The principles of a field are actually a set of interwoven stories about the structure and behavior of 
field elements. 
—P
ETER 
J.
D
ENNING
,
P
AST 
P
RESIDENT OF THE 
A
SSOCIATION FOR 
C
OMPUTING 
M
ACHINERY
,
IN 
"G
REAT 
P
RINCIPLES OF 
C
OMPUTING

It is important that we build models of the brain at the right level. This is, of course, true for all of our scientific 
models. Although chemistry is theoretically based on physics and could be derived entirely from physics, this would 
be unwieldy and infeasible in practice. So chemistry uses its own rules and models. We should likewise, in theory, be 
able to deduce the laws of thermodynamics from physics, but this is a far-from-straightforward process. Once we have 
a sufficient number of particles to call something a gas rather than a bunch of particles, solving equations for each 
particle interaction becomes impractical, whereas the laws of thermodynamics work extremely well. The interactions 
of a single molecule within the gas are hopelessly complex and unpredictable, but the gas itself, comprising trillions of 
molecules, has many predictable properties. 
Similarly, biology, which is rooted in chemistry, uses its own models. It is often unnecessary to express higher-
level results using the intricacies of the dynamics of the lower-level systems, although one has to thoroughly 
understand the lower level before moving to the higher one. For example, we can control certain genetic features of an 
animal by manipulating its fetal DNA without necessarily understanding all of the biochemical mechanisms of DNA, 
let alone the interactions of the atoms in the DNA molecule. 
Often, the lower level is more complex. A pancreatic islet cell, for example, is enormously complicated, in terms 
of all its biochemical functions (most of which apply to all human cells, some to all biological cells). Yet modeling 
what a pancreas does—with its millions of cells—in terms of regulating levels of insulin and digestive enzymes, 
although not simple, is considerably less difficult than formulating a detailed model of a single islet cell. 
The same issue applies to the levels of modeling and understanding in the brain, from the physics of synaptic 
reactions up to the transformations of information by neural clusters. In those brain regions for which we have 
succeeded in developing detailed models, we find a phenomenon similar to that involving pancreatic cells. The models 
are complex but remain simpler than the mathematical descriptions of a single cell or even a single synapse. As we 
discussed earlier, these region-specific models also require significantly less computation than is theoretically implied 
by the computational capacity of all of the synapses and cells. 
Gilles Laurent of the California Institute of Technology observes, "In most cases, a system's collective behavior is 
very difficult to deduce from knowledge of its components....[Neuroscience is ... a science of systems in which first-
order and local explanatory schemata are needed but not sufficient." Brain reverse-engineering will proceed by 
iterative refinement of both top-to-bottom and bottom-to-top models and simulations, as we refine each level of 
description and modeling. 
Until very recently neuroscience was characterized by overly simplistic models limited by the crudeness of our 
sensing and scanning tools. This led many observers to doubt whether our thinking processes were inherently capable 
of understanding themselves. Peter D. Kramer writes, "If the mind were simple enough for us to understand, we would 
be too simple to understand it."
50
Earlier, I quoted Douglas Hofstadter's comparison of our brain to that of a giraffe, the 
structure of which is not that different from a human brain but which clearly does not have the capability of 
understanding its own methods. However, recent success in developing highly detailed models at various levels—from 
neural components such as synapses to large neural regions such as the cerebellum—demonstrate that building precise 
mathematical models of our brains and then simulating these models with computation is a challenging but viable task 
once the data capabilities become available. Although models have a long history in neuroscience, it is only recently 
that they have become sufficiently comprehensive and detailed to allow simulations based on them to perform like 
actual brain experiments. 



Download 13,84 Mb.

Do'stlaringiz bilan baham:
1   ...   67   68   69   70   71   72   73   74   ...   303




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish