Fan bobi-7; Fan bo’limi-1; Qiyinlik darajasi-1;
p
=
4
m
+
3
shakldagi sonlar uchun kvadraik chegirmamas
5
-1
2
4
№
26
.
Manba: J.Hojiyev, A.S.Faynleyb “Algebra va sonlar nazariyasi kursi”. Toshkent- “O’zbekiston”-2001-y.
Fan bobi-3; Fan bo’limi-1; Qiyinlik darajasi-2;
{
x
1
+
x
2
+
x
3
+
x
4
=
1
x
1
−
x
2
+
x
3
+
x
4
=−
1
sistеmani birgalikka tеkshirib umumiy еchimini toping
7
sistеma birgalikda emas
sistеma birgalikda,
1
2
3
4
2
3
,
x
x
x x
x
x
sistеma birgalikda,
1
3
4
2
,
2
x
x
x x
sistеma birgalikda,
1
3
4
2
3
,
x
x
x x
x
№
27
.
Manba: J.Hojiyev, A.S.Faynleyb “Algebra va sonlar nazariyasi kursi”. Toshkent- “O’zbekiston”-2001-y.
Fan bobi-3; Fan bo’limi-1; Qiyinlik darajasi-2;
{
x
+
y
+
3
z
+
4
t
=
0,
7
x
+
14
y
+
20
z
+
27
t
=
0,
5
x
+
10
y
+
16
z
+
19
t
=−
2,
3
x
+
5
y
+
6
z
+
13
t
=
5.
sistеmani еching
x
=
2
, y
=−
1
,
z
=
0
,t
=
0
x
=
0
, y
=
0
, z
=
0
,t
=
0
x
=
1
, y
=−
1
,
z
=−
1
,t
=
1
x
=
2
, y
=−
2
,
z
=−
2
,t
=
2
№
28
.
Manba: J.Hojiyev, A.S.Faynleyb “Algebra va sonlar nazariyasi kursi”. Toshkent- “O’zbekiston”-2001-y.
Fan bobi-3; Fan bo’limi-2; Qiyinlik darajasi-1;
f
(
x
)=
√
x
ва
g
(
x
)=
3
x
+
1
funktsiyalar uchun
f
∘
g
ni toping
.
3
√
x
+
1
3
√
x
+
1
1
√
3
x
+
1
№
29
.
Manba: R.N.Nazarov, B.T.Toshpo’latov, A.D. Do’simbetov “Algebra va sonlar nazariyasi” II
qism.Toshkent “O’qituvchi” 1995-yil.
Fan bobi-4; Fan bo’limi-1; Qiyinlik darajasi-1;
R
[
x
]
да
f
(
x
)=
2
x
2
−
3
x
+
1
, g
(
x
)=
x
2
+
x
−
2
ko`phadlarning eng kata umumiy bo`luvchisini toping.
x
2
- 1
x
2
+ 1
-5(x-1)
8
x
- 1
№
30
.
Manba: R.N.Nazarov, B.T.Toshpo’latov, A.D. Do’simbetov “Algebra va sonlar nazariyasi” II
qism.Toshkent “O’qituvchi” 1995-yil.
Fan bobi-1; Fan bo’limi-2; Qiyinlik darajasi-1;
(1,1,2,1,2,1,2) uzluksiz kasrni oddiy kasrga aylantiring
71/40
41/70
45/70
45/80
№
31
.
Manba R.N.Nazarov, B.T.Toshpo’latov, A.D. Do’simbetov “Algebra va sonlar nazariyasi” II
qism.Toshkent “O’qituvchi” 1995-yil.
Fan bobi-7; Fan bo’limi-2; Qiyinlik darajasi-1;
(1+i)1000 hisoblang.
1
−
1
4
i
2500
1
+
1
4
i
1
4
i
№
32
.
Manba: R.N.Nazarov, B.T.Toshpo’latov, A.D. Do’simbetov “Algebra va sonlar nazariyasi” II
qism.Toshkent “O’qituvchi” 1995-yil.
Fan bobi-3; Fan bo’limi-2; Qiyinlik darajasi-1;
(1-i)
1000
hisoblang.
2500 i
.
1
−
1
4
i
.
1
+
1
4
i
1
4
i
№
33
.
Manba R.N.Nazarov, B.T.Toshpo’latov, A.D. Do’simbetov “Algebra va sonlar nazariyasi” II
qism.Toshkent “O’qituvchi” 1995-yil.
Fan bobi-2; Fan bo’limi-2; Qiyinlik darajasi-1;
(5/11) lejandr simvolini toping
-1
9
3
5
0
№
34
.
Manba: R.N.Nazarov, B.T.Toshpo’latov, A.D. Do’simbetov “Algebra va sonlar nazariyasi” II
qism.Toshkent “O’qituvchi” 1995-yil.
Fan bobi-4; Fan bo’limi-2; Qiyinlik darajasi-1;
(
x,
2,3,4
)=
73
30
tenglamani yeching
-2
2
3
0
№
35
.
Manba: J.Hojiyev, A.S.Faynleyb “Algebra va sonlar nazariyasi kursi”. Toshkent- “O’zbekiston”-2001-y.
Fan bobi-5; Fan bo’limi-2; Qiyinlik darajasi-2;
(z
1
+
z
2
)+
z
3
=
z
1
+(
z
2
+
z
3
); 2)
(z
1
+
z
2
)
z
3
=
z
1
z
3
+
z
2
z
3
tеngliklardan qaysilari
ixtyoriy
z
1,
z
2
,
z
3
komplеks sonlar uchun o`rinli?
Ikkalasi ham o`rinli emas
Ikkalasi ham o`rinli
2
1
№
36
.
Manba: J.Hojiyev, A.S.Faynleyb “Algebra va sonlar nazariyasi kursi”. Toshkent- “O’zbekiston”-2001-y.
Fan bobi-3; Fan bo’limi-2; Qiyinlik darajasi-2;
A
−
1
=
(
2 0 0
0 3 0
0 0 4
)
,
B
−
1
=
(
0 1
−
1
2 3
−
5
4
−
2
1
)
bo`lsa
(
AB
)
−
1
topilsin
(
0 3
4
4
9
20
8
−
6
−
4
)
(
0 3 4
4 9 2
8 6
−
4
)
(
0 3
4
4
6
2
8
−
6
−
4
)
(
0 3 4
4 9 20
8 6 4
)
10
№
37
.
Manba: J.Hojiyev, A.S.Faynleyb “Algebra va sonlar nazariyasi kursi”. Toshkent- “O’zbekiston”-2001-y.
Fan bobi-3; Fan bo’limi-2; Qiyinlik darajasi-2;
(
1 2
2 1
)
teskari matrisani toping
(
0
2
2 1
/
2
)
(
1
/
3
2
2 1
/
3
)
(
1 2
2 1
)
(
−
1
/
3
−
2
/
3
−
2
/
3
−
1
/
3
)
№
38
.
R.N.Nazarov, B.T.Toshpo’latov, A.D. Do’simbetov “Algebra va sonlar nazariyasi” II qism.Toshkent
“O’qituvchi” 1995-yil.
Fan bobi-1; Fan bo’limi-1; Qiyinlik darajasi-3;
Quyidagi tasdiqlardan qaysinisi noo`g`ri?
.
|
4
+
12
|>|
4
|+|
12
|
|
7
−
8
|≠|
7
|−|
8
|
|
2
+
3
|≥|
2
|−|
3
|
|
3
+
4
|≤|
3
|+|
4
|
№
39
.
Manba: : J.Hojiyev, A.S.Faynleyb “Algebra va sonlar nazariyasi kursi”. Toshkent- “O’zbekiston”-2001-
y.
Fan bobi-5; Fan bo’limi-2; Qiyinlik darajasi-3;
Komplеks sonlar maydonida
√
5
+
12
i
ildizning hamma qiymatlarini toping.
.
{
3
+
2
i,
−
3
−
2
i
}
{
3
+
2
i,
−
3
+
2
i
}
{
3
+
2
i,
3
−
2
i
}
To`g`ri javob kеltrilmagan
№
40
Manba: J.Hojiyev, A.S.Faynleyb “Algebra va sonlar nazariyasi kursi”. Toshkent- “O’zbekiston”-2001-y.
Fan bobi-10; Fan bo’limi-1; Qiyinlik darajasi-1;
(
0 1 0
−
4 4 0
−
2 1 2
)
normal Jordan shaklini yozing.
11
(
2 1 0
0 2 1
0 0 2
)
(
2 0 0
0 2 0
0 0 2
)
(
2 0 0
0 2 1
0 0 2
)
(
2 1 0
0 1 0
0 0 2
)
№
41
.
Manba: J.Hojiyev, A.S.Faynleyb “Algebra va sonlar nazariyasi kursi”. Toshkent- “O’zbekiston”-2001-y.
Fan bobi-5 Fan bo’limi-1; Qiyinlik darajasi-1;
Trigonomеtrik ko’rinishdagi komplеks sonlarni ko’paytrish uchun nima qilinadi?
modullari ko’paytriladi
argumеntlari ko’paytriladi
Modullarni ko’paytrib, argumеntlari qo’shiladi;
argumеntlari qo’shiladi
№
42
.
Manba: J.Hojiyev, A.S.Faynleyb “Algebra va sonlar nazariyasi kursi”. Toshkent- “O’zbekiston”-2001-y.
Fan bobi-3; Fan bo’limi-2; Qiyinlik darajasi-1;
Tеskari matritsalar kеltrilgan hossa o`rinli emas?uchun qaysi javobda
.
(
A
−
1
)
−
1
=
A
−
1
(
AB
)
−
1
=
B
−
1
A
−
1
(
A
−
1
)
−
1
=
A
.
det
A
−
1
=(
det
A
)
−
1
№
43
.
Manba: J.Hojiyev, A.S.Faynleyb “Algebra va sonlar nazariyasi kursi”. Toshkent- “O’zbekiston”-2001-y.
Fan bobi-5; Fan bo’limi-1; Qiyinlik darajasi-1;
z
+¯
z
=
2 Re
z
; 2)
arg
(
z
1
⋅
z
2
)
=
arg
z
1
⋅
arg
z
2
tеngliklardan qaysilari ихтиёрий
z
,
z
1,
z
2
komplеks sonlar
uchun o`rinli?
Ikkalasi ham o`rinli
.
Ikkalasi ham o`rinli emas
1
2
№
44
.
Manba: R.N.Nazarov, B.T.Toshpo’latov, A.D. Do’simbetov “Algebra va sonlar nazariyasi” II
qism.Toshkent “O’qituvchi” 1995-yil.
12
Fan bobi-2; Fan bo’limi-1; Qiyinlik darajasi-1;
ϕ
(
360
)
= ni toping
98.
100.
96.
108
№
45
.
R.N.Nazarov, B.T.Toshpo’latov, A.D. Do’simbetov “Algebra va sonlar nazariyasi” II qism.Toshkent
“O’qituvchi” 1995-yil.
Fan bobi-4; Fan bo’limi-1; Qiyinlik darajasi-1;
-1 komplеks sonini trigonomеtrik shaklda yozing
cos
+isin0
-cos
+isin
cos
+isin
.
-cos
+isin0
№
46
.
Manba: R.N.Nazarov, B.T.Toshpo’latov, A.D. Do’simbetov “Algebra va sonlar nazariyasi” II
qism.Toshkent “O’qituvchi” 1995-yil..
Fan bobi-7; Fan bo’limi-1; Qiyinlik darajasi-1;
x
2
+1=0 tenglamani haqiqiy yechimini toping.
2.
-i
1.
Mavjud emas
№
47
.
Manba: J.Hojiyev, A.S.Faynleyb “Algebra va sonlar nazariyasi kursi”. Toshkent- “O’zbekiston”-2001-y.
Fan bobi-3; Fan bo’limi-1; Qiyinlik darajasi-1;
(
1 0 0
−
1 2 0
1 2 3
)
xos sonlarni toping.
1,2,3
3,2,1
2,2,1
1,1,3
№
48
.
Manba: R.N.Nazarov, B.T.Toshpo’latov, A.D. Do’simbetov “Algebra va sonlar nazariyasi” II
qism.Toshkent “O’qituvchi” 1995-yil..
Fan bobi-1; Fan bo’limi-1; Qiyinlik darajasi-2;
2 dan 100 gacha bo’lgan natural sonlar orasida nechta tub son bor
30
25
26
13
27.
№
49
.
Manba: R.N.Nazarov, B.T.Toshpo’latov, A.D. Do’simbetov “Algebra va sonlar nazariyasi” II
qism.Toshkent “O’qituvchi” 1995-yil..
Fan bobi-7; Fan bo’limi-2; Qiyinlik darajasi-1;
2 soni f(x) =x
5
–5x
4
+7x
3
-2x
2
+4x - 8 ko`phadning nеcha karrali ildizi bo`ladi
.
2
4
1
3
№
50
.
Manba: R.N.Nazarov, B.T.Toshpo’latov, A.D. Do’simbetov “Algebra va sonlar nazariyasi” II
qism.Toshkent “O’qituvchi” 1995-yil..
Fan bobi-2; Fan bo’limi-1; Qiyinlik darajasi-1;
2 sonining 7 modul bo’yicha tegishli bo’lgan daraja ko’rsatkichini toping.
2 soni 7 modul bo’yicha boshlang’ich ildiz emas
2
4
6
№
51
.
Manba: R.N.Nazarov, B.T.Toshpo’latov, A.D. Do’simbetov “Algebra va sonlar nazariyasi” II
Do'stlaringiz bilan baham: |