Ocean Engineering 235 (2021) 109355
17
C. Cheng et al.
Ralli, E., Hirzinger, G., 1997. Robot path planning using kohonen maps. In: Proceedings
of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems.
Innovative Robotics for Real-World Applications. IROS ’97. Vol. 3, IEEE, pp.
1224–1229.
Ramos, P., Cruz, N., Matos, A., Neves, M.V., Pereira, F.L., 2001. Monitoring an ocean
outfall using an AUV. In: MTS/IEEE Oceans 2001. an Ocean Odyssey. Conference
Proceedings. Vol. 3, IEEE, pp. 2009–2014.
Riedmiller, M., Hafner, R., Lampe, T., Neunert, M., Degrave, J., Wiele, T., Mnih, V.,
Heess, N., Springenberg, J.T., 2018. Learning by playing solving sparse reward
tasks from scratch. In: Proceedings of International Conference on Machine Learning
(ICML). PMLR, pp. 4344–4353.
Rummery, G.A., Niranjan, M., 1994. On-Line Q-Learning using Connectionist Systems.
Vol. 37, University of Cambridge, Department of Engineering Cambridge, UK.
Sagala, F., Bambang, R.T., 2011. Development of sea glider autonomous underwater
vehicle platform for marine exploration and monitoring. Indian J. Geo Marine Sci.
40 (2), 287–295.
Saravanakumar, S., Asokan, T., 2013. Multipoint potential field method for path
planning of autonomous underwater vehicles in 3D space. Intell. Serv. Robotics
6 (4), 211–224.
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O., 2017. Proximal policy
optimization algorithms. Mach. Learn. 1–12.
Sethian, J.A., 1999. Level Set Methods and Fast Marching Methods: Evolving Interfaces
in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials
Science. Vol. 3, Cambridge university press.
Shen, J., Gu, G.C., Liu, H.B., 2006. Multi-agent hierarchical reinforcement learning
by integrating options into MAXQ. In: First International Multi-Symposiums on
Computer and Computational Sciences (IMSCCS’06). Vol. 1, IEEE, pp. 676–682.
Shojania, H., Li, B., 2007. Parallelized progressive network coding with hardware
acceleration. In: 2007 Fifteenth IEEE International Workshop on Quality of Service.
IEEE, pp. 47–55.
Simonyan, K., Zisserman, A., Two-stream convolutional networks for action recognition
in videos, in: Advances in Neural Information Processing Systems, 2014, pp.
568–576.
Singla, A., Padakandla, S., Bhatnagar, S., 2019. Memory-based deep reinforcement
learning for obstacle avoidance in UAV with limited environment knowledge. IEEE
Trans. Intell. Transp. Syst. 1–12.
Storn, R., Price, K., 1997. Differential evolution-a simple and efficient heuristic for
global optimization over continuous spaces. J. Global Optim. 11 (4), 341–359.
Sun, J., Feng, B., Xu, W.B., 2004. Particle swarm optimization with particles hav-
ing quantum behavior. In: Proceedings of the 2004 Congress on Evolutionary
Computation (IEEE Cat. No. 04TH8753). Vol. 1, IEEE, pp. 325–331.
Sun, Y.S., Ran, X.R., Zhang, G.C., Xu, H., Wang, X.B., 2020. AUV 3D Path planning
based on the improved hierarchical deep Q network. J. Mar. Sci. Eng. 8 (2), 145.
Sun, Y., Zhang, R.B., 2012. Research on global path planning for AUV based on GA.
In: Mechanical Engineering and Technology. Springer, pp. 311–318.
Sun, B., Zhu, D.Q., 2016. Three dimensional D* lite path planning for autonomous
underwater vehicle under partly unknown environment. In: 2016 12th World
Congress on Intelligent Control and Automation (WCICA). IEEE, pp. 3248–3252.
Sun, B., Zhu, D.Q., Tian, C., Luo, C.M., 2018a. Complete coverage autonomous
underwater vehicles path planning based on glasius bio-inspired neural network
algorithm for discrete and centralized programming. IEEE Trans. Cogn. Dev. Syst.
11 (1), 73–84.
Sun, B., Zhu, D.Q., Yang, S.X., 2016. A novel tracking controller for autonomous
underwater vehicles with thruster fault accommodation. J. Navig. 69 (3), 593–612.
Sun, B., Zhu, D.Q., Yang, S.X., 2018b. An optimized fuzzy control algorithm for
three-dimensional AUV path planning. Int. J. Fuzzy Syst. 20 (2), 597–610.
Sutton, R.S., Barto, A.G., 1998. Reinforcement Learning: An Introduction. Vol. 135, MIT
press Cambridge.
Szczerba, R.J., Galkowski, P., Glicktein, I.S., Ternullo, N., 2000. Robust algorithm for
real-time route planning. IEEE Trans. Aerosp. Electron. Syst. 36 (3), 869–878.
Taheri, E., Ferdowsi, M.H., Danesh, M., 2019. Closed-loop randomized kinodynamic
path planning for an autonomous underwater vehicle. Appl. Ocean Res. 83, 48–64.
Tan, C.S., Sutton, R., Chudley, J., 2004. An incremental stochastic motion planning
technique for autonomous underwater vehicles. IFAC Proc. Vol. 37 (10), 483–488.
Tan, C.S., Sutton, R., Chudley, J., 2005. Quasi-random, manoeuvre-based motion
planning algorithm for autonomous underwater vehicles. IFAC Proc. Vol. 38 (1),
103–108.
Tang, X.Y., Yu, F., Chen, R.J., 2010. Path planning of underwater vehicle based
on particle swarm optimization. In: 2010 International Conference on Intelligent
Control and Information Processing. IEEE, pp. 123–126.
Thrun, S., 2002. Probabilistic robotics. Commun. ACM 45 (3), 52–57.
Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P., 2017. Domain
randomization for transferring deep neural networks from simulation to the real
world. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, pp. 23–30.
Tzeng, E., Devin, C., Hoffman, J., Finn, C., Peng, X., Levine, S., Saenko, K., Darrell, T.,
2015. Towards adapting deep visuomotor representations from simulated to real
environments, volume 2. ArXiv Preprint
ArXiv:1511.07111
.
Vibhute, S., 2018. Adaptive dynamic programming based motion control of autonomous
underwater vehicles. In: 2018 5th International Conference on Control, Decision
and Information Technologies (CoDIT). IEEE, pp. 966–971.
Villar, A.S., Solari, F.J., Rozenfeld, A.F., Acosta, G.G., 2016. Artificial potential fields
for the obstacles avoidance system of an AUV asing a mechanical scanning sonar.
In: 2016 3rd IEEE/OES South American International Symposium on Oceanic
Engineering (SAISOE). IEEE, pp. 1–6.
Wang, L., Liu, L.L., Qi, J.Y., Peng, W.P., 2020. Improved quantum particle swarm
optimization algorithm for offline path planning in AUVs. IEEE Access 8,
143397–143411.
Wang, L.X., Pang, S., 2019. Chemical plume tracing using an AUV based on POMDP
source mapping and A-star path planning. In: OCEANS 2019 MTS/IEEE SEATTLE.
IEEE, pp. 1–7.
Wang, H.J., Wang, L.L., Li, J., Pan, L.X., 2013. A vector polar histogram method based
obstacle avoidance planning for AUV. In: 2013 MTS/IEEE OCEANS-Bergen. IEEE,
pp. 1–5.
Wang, H.J., Wei, X., 2009. Research on global path planning based on ant colony
optimization for AUV. J. Mar. Sci. Appl. 8 (1), 58–64.
Wang, H.J., Zhou, H.X., Yao, H.F., 2016. Research on autonomous planning
method based on improved quantum particle swarm optimization for autonomous
underwater vehicle. In: OCEANS 2016 MTS/IEEE Monterey. IEEE, pp. 1–7.
Watkins, C.J., Dayan, P., 1992. Q-learning. Mach. Learn. 8 (3–4), 279–292.
Wiig, M.S., 2019. Collision avoidance and path following for underactuated marine
vehicles, NTNU.
Wu, L., Li, Y., Liu, J., Based on improved bio-inspired model for path planning by
Multi-AUV, in: Proceedings of the 2018 International Conference on Electronics
and Electrical Engineering Technology, 2018, pp. 128–134.
Wu, H., Song, S.J., Hsu, Y.C., You, K.Y., Wu, C., 2019. End-to-end sensorimotor
control problems of AUVs with deep reinforcement learning. In: 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE, pp.
5869–5874.
Xiang, X., Zheng, J., Yu, C., Xu, G., 2014. Nonlinear path following control of
autonomous underwater vehicles: under-actuated and fully-actuated cases. In:
Proceedings of the 33rd Chinese Control Conference. IEEE, pp. 8006–8010.
Xu, H.L., Feng, X.S., 2009. An AUV fuzzy obstacle avoidance method under event
feedback supervision. In: OCEANS 2009. IEEE, pp. 1–6.
Yan, Z.P., Li, J.Y., Jiang, A.Z., Wang, L., 2018a. An obstacle avoidance algorithm for
AUV based on obstacle’s detected outline. In: 2018 37th Chinese Control Conference
(CCC). IEEE, pp. 5257–5262.
Yan, Z.P., Li, J.Y., Wu, Y., Yang, Z.W., 2018b. A novel path planning for AUV based
on objects’ motion parameters predication. IEEE Access 6, 69304–69320.
Yan, S.K., Pan, F., 2019. Research on route planning of AUV based on genetic
algorithms. In: IEEE International Conference on Unmanned Systems and Artificial
Intelligence (ICUSAI). IEEE, pp. 184–187.
Yan, C., Xiang, X.J., Wang, C., 2019. Towards real-time path planning through deep
reinforcement learning for a UAV in dynamic environments. J. Intell. Robot. Syst.
1–13.
Yan, Z.P., Zhao, Y.F., Chen, T., Deng, C., 2012a. 3D Path planning for AUV based on
circle searching. In: 2012 Oceans. IEEE, pp. 1–6.
Yan, Z.P., Zhao, Y.F., Han., Z.H., A method of UUV path planning with biased extension
in ocean flows, in: Intelligent Control and Automation, 2012b.
Yan, M.Z., Zhu, D.Q., 2011. An algorithm of complete coverage path planning for
autonomous underwater vehicles. In: Key Engineering Materials. Vol. 467, Trans
Tech Publ, pp. 1377–1385.
Yang, L., Li, K., Zhang, W., Wang, Y., Chen, Y., Zheng, L., 2015. Three-dimensional path
planning for underwater vehicles based on an improved ant colony optimization
algorithm. J. Eng. Sci. Technol. Rev. 8 (5), 24–33.
Yang, S.X., Meng, M.H., 2003. Real-time collision-free motion planning of a mobile
robot using a neural dynamics-based approach. IEEE Trans. Neural Netw. 14 (6),
1541–1552.
Yang, G., Zhang, R.B., 2009. Path planning of AUV in turbulent ocean environments
used adapted inertia-weight PSO. In: 2009 Fifth International Conference on Natural
Computation. Vol. 3, IEEE, pp. 299–302.
Yang, G., Zhang, R.B., Xu, D., Zhang, Z.Y., 2009. Local planning of AUV based on
Fuzzy-Q learning in strong sea flow field. In: 2009 International Joint Conference
on Computational Sciences and Optimization. Vol. 1, IEEE, pp. 994–998.
Yang, Y.Y., Zhu, D.Q., 2011. Research on dynamic path planning of AUV based on
forward looking sonar and fuzzy control. In: 2011 Chinese Control and Decision
Conference (CCDC). IEEE, pp. 2425–2430.
Yao, J.F., Lin, C., Xie, X.B., Wang, A.J., Hung, C.C., 2010. Path planning for virtual
human motion using improved A* algorithm. In: 2010 Seventh International
Conference on Information Technology: New Generations. IEEE, pp. 1154–1158.
Yao, P., Wang, H.L., Su, Z.K., 2015. UAV Feasible path planning based on disturbed
fluid and trajectory propagation. Chin. J. Aeronaut. 28 (4), 1163–1177.
Yao, X.L., Wang, F., Wang, J.F., Zhao, J.C., 2018. Time-optimal path planning to solve
motion direction restrict with lower computational cost. In: 2018 37th Chinese
Control Conference (CCC). IEEE, pp. 5245–5250.
Yao, P., Zhao, S.Q., 2018. Three-dimensional path planning for AUV based on
interfered fluid dynamical system under ocean current (june 2018). IEEE Access
6, 42904–42916.
Ye, C., Borenstein, J., 2002. Characterization of a 2D laser scanner for mobile
robot obstacle negotiation. In: Proceedings 2002 IEEE International Conference on
Robotics and Automation (Cat. No. 02CH37292). Vol. 3, IEEE, pp. 2512–2518.
Do'stlaringiz bilan baham: |