Ocean Engineering 235 (2021) 109355
16
C. Cheng et al.
Haupt, R.L., Werner, D.H., 2007. Genetic Algorithms in Electromagnetics. John Wiley
and Sons.
Havenstrøm, S.T., Rasheed, A., San, O., 2021. Deep reinforcement learning controller
for 3D path following and collision avoidance by autonomous underwater vehicles.
Front. Robotics and AI 7, 211.
He, B., Zhou, X., 2010. Path planning and tracking for AUV in large-scale environment.
In: 2010 2nd International Asia Conference on Informatics in Control, Automation
and Robotics (CAR 2010). Vol. 1, IEEE, pp. 318–321.
Heess, N., Wayne, G., Silver, D., Lillicrap, T., Tassa, Y., Erez, T., 2015. Learning
continuous control policies by stochastic value gradients. ArXiv Preprint
ArXiv:
1510.09142
.
Hernández, E., Carreras, M., Antich, J., Ridao, P., Ortiz, A., 2011. A topologically guided
path planner for an AUV using homotopy classes. In: 2011 IEEE International
Conference on Robotics and Automation. IEEE, pp. 2337–2343.
Hernández, J.D., Vallicrosa, G., Vidal, E., Pairet, È., Carreras, M., Ridao, P., 2015. On-
line 3D path planning for close-proximity surveying with AUVs. IFAC-PapersOnLine
48 (2), 50–55.
Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9 (8),
1735–1780.
Hodgkin, A.L., Huxley, A.F., 1952. A quantitative description of membrane current and
its application to conduction and excitation in nerve. J. Physiol. 117 (4), 25–71.
Hou, H.S., Andrews, H.C., 1978. Cubic splines for image interpolation and digital
filtering. IEEE Trans. Acoust. Speech Signal Process. 26 (6), 508–517.
Hou, X.Y., Du, J., Wang, J.J., Ren, Y., AUV path planning with kinematic constraints in
unknown environment using reinforcement learning, in: Proceedings of the 2020
4th International Conference on Digital Signal Processing, 2020, pp. 274–278.
Hu, C.L., Zhang, F., 2019. Research on AUV global path planning based on
multi-objective ant colony strategy. In: Chinese Automation Congress. IEEE, pp.
5512–5517.
Huang, C.X., Pan, W., Chen, J., Wu, H.T., Wu, D.X., Xu, S.X., 2014. Simulation research
on obstacle avoidance of autonomous underwater vehicle based on single beam
ranging sonar. J. Xiamen Univ. (Nat. Sci.).
Jaillet,
L.,
Cortés,
J.,
Siméon,
T.,
2010.
Sampling-based
path
planning
on
configuration-space costmaps. IEEE Trans. Robot. 26 (4), 635–646.
Jiu, H.F., Chen, Y., Deng, W., Pang, S., 2019. Underwater chemical plume tracing based
on partially observable Markov decision process. Int. J. Adv. Robot. Syst. 16 (2),
1–12.
Karaman, S., Frazzoli, E., 2011. Sampling-based algorithms for optimal motion
planning. Int. J. Robot. Res. 30 (7), 846–894.
Kawano, H., Ura, T., 2002a. Fast reinforcement learning algorithm for motion planning
of nonholonomic autonomous underwater vehicle in disturbance. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems. Vol. 1, IEEE, pp.
903–908.
Kawano, H., Ura, T., 2002b. Motion planning algorithm for nonholonomic autonomous
underwater vehicle in disturbance using reinforcement learning and teaching
method. In: Proceedings 2002 IEEE International Conference on Robotics and
Automation (Cat. No.02CH37292). 4, IEEE, pp. 4032–4038.
Khalaji, A.K., Tourajizadeh, H., 2020. Nonlinear lyapounov based control of an
underwater vehicle in presence of uncertainties and obstacles. Ocean Eng. 198.
Khanmohammadi, S., Alizadeh, G., Poormahmood, M., 2007. Design of a fuzzy
controller for underwater vehicles to avoid moving obstacles. In: 2007 IEEE
International Fuzzy Systems Conference. IEEE, pp. 1–6.
Khatib, O., 1986. Real-time obstacle avoidance for manipulators and mobile robots.
In: Proceedings. 1985 IEEE International Conference on Robotics and Automation.
Springer, pp. 396–404.
Kimball, P., Rock, S., 2008. Sonar-based iceberg-relative AUV navigation. In: 2008
IEEE/OES Autonomous Underwater Vehicles. IEEE, pp. 1–6.
Kober, J., Peters, J., 2014. Reinforcement learning in robotics: a survey. Int. J. Robot.
Res. 32 (11), 1238–1274.
Koenig, S., Likhachev, M., 2005. Fast replanning for navigation in unknown terrain.
IEEE Trans. Robot. 21 (3), 354–363.
Kwan, C., Lewis, F.L., 2000. Robust backstepping control of nonlinear systems using
neural networks. IEEE Trans. Syst. Man Cybern.-Part A: Systems and Humans 30
(6), 753–766.
Larranaga, P., Lozano, J.A., 2001. Estimation of distribution algorithms. Genet.
Algorithms and Evol. Comput. 64 (5), 454–468.
Lefeber, E., Pettersen, K.Y., Nijmeijer, H., 2003. Tracking control of an underactuated
ship. IEEE Trans. Control Syst. Technol. 11 (1), 52–61.
Li, Q.Y., 2019. 3D Cubic Bezier Curves for multi-target path planning for autonomous
underwater vehicles. In: OCEANS 2019-Marseille. IEEE, pp. 1–5.
Li, G., Gomez, R., Nakamura, K., He, B., 2019a. Human-centered reinforcement
learning: a survey. IEEE Trans. Hum.-Mach. Syst. 49 (4), 337–349.
Li, S., Guo, Y., 2012. Neural-network based AUV path planning in estuary environments.
In: Proceedings of the 10th World Congress on Intelligent Control and Automation.
IEEE, pp. 3724–3730.
Li, Z.Y., Liu, W.D., Gao, L.E., Li, L., Zhang, F.H., 2019c. Path planning method for
AUV docking based on adaptive quantum-behaved particle swarm optimization.
IEEE Access 7, 78665–78674.
Li, J., Pan, Q.S., Hong, B.R., 2010. A new multi-agent reinforcement learning approach.
In: The 2010 IEEE International Conference on Information and Automation. IEEE,
pp. 1667–1671.
Li, Q., Shi, X.H., Kang, Z.Q., 2013. The application of an improved genetic algorithm
in the AUV global path planning. In: Applied Mechanics and Materials. Vol. 246,
Trans Tech Publ, pp. 1165–1169.
Li, D.L., Wang, P., Du, L., 2018. Path planning technologies for autonomous underwater
vehicles-A review. IEEE Access 7, 9745–9768.
Li, X.J., Wang, W., Song, J.Y., Liu, D., 2019b. Path planning for autonomous underwater
vehicle in presence of moving obstacle based on three inputs fuzzy logic. In:
2019 4th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS). IEEE, pp.
265–268.
Li, J.J., Zhang, R.B., 2017. Multi-AUV distributed task allocation based on the
differential evolution quantum bee colony optimization algorithm. Pol. Marit. Res.
24 (s3), 65–71.
Li, M.C., Zhang, H.J., AUV 3D path planning based on A* algorithm, in: 2020 Chinese
Automation Congress (CAC), 2020.
Li, Y., Zhang, F.B., Xu, D.M., Dai, J.G., 2017. Liveness-based RRT algorithm for
autonomous underwater vehicles motion planning. J. Adv. Transp. 2017, 1–10.
Li, J.J., Zhang, R.B., Yang, Y., 2014a. Research on route obstacle avoidance task
planning based on differential evolution algorithm for AUV. In: International
Conference in Swarm Intelligence. Springer, pp. 106–113.
Li, X., Zhu, D.Q., Qian, Y., 2014b. A survey on formation control algorithms for
Multi-AUV system. Unmanned Syst. 2 (4), 351–359.
Lim, H.S., Chin, C.K., Chai, S., Bose, N., 2020a. Online AUV path replanning using
quantum-behaved particle swarm optimization with selective differential evolution.
CMES Comput. Model. Eng. Sci. 1–18.
Lim, H.S., Fan, S.S., Chin, C.K.H., Chai, S.H., Bose, N., 2020b. Particle swarm
optimization algorithms with selective differential evolution for AUV path planning.
IAES Int. J. Robotics Autom. 9 (2), 94–112.
Lin, C., Bi, Y., Zhao, H., Liu, Z., Jia, S., Zhu, J., 2018. DTE-Sdn: A dynamic traffic
engineering engine for delay-sensitive transfer. IEEE Internet Things J. 5 (6),
5240–5253.
Lin, C., Han, G.J., Du, J.X., Bi, Y.G., Shu, L., Fan, K.G., 2020. A path planning scheme
for AUV flock-based internet of underwater things systems to enable transparent
and smart ocean. IEEE Internet Things J. 9760–9772.
Liu, R.D., Chen, Z.G., Wang, Z.J., Zhan, Z.H., 2019. Intelligent path planning for AUVs
in dynamic environments: An EDA-based learning fixed height histogram approach.
IEEE Access 7, 185433–185446.
Liu, Y., Wang, F., Lv, Z., Cao, K., Lin, Y., 2018. Pixel-to-action policy for underwater
pipeline following via deep reinforcement learning. In: 2018 IEEE International
Conference of Intelligent Robotic and Control Engineering. IEEE, pp. 135–139.
Ma, Y.N., Gong, Y.J., Xiao, C.F., Gao, Y., Zhang, J., 2018. Path planning for autonomous
underwater vehicles: An ant colony algorithm incorporating alarm pheromone. IEEE
Trans. Veh. Technol. 68 (1), 141–154.
Ma, Y., Mao, Z.Y., Wang, T., Qin, J., Ding, W.J., Meng, X.Y., 2020. Obstacle avoidance
path planning of unmanned submarine vehicle in ocean current environment based
on improved firework-ant colony algorithm. Comput. Electr. Eng. 87, 106773.
Mac, T.T., Copot, C., Tran, D.T., De Keyser, R., 2016. Heuristic approaches in robot
path planning: A survey. Robot. Auton. Syst. 86, 13–28.
Mahmoud, S., Powers, D.W., Yazdani, A.M., Sammut, K., Atyabi, A., 2018. Efficient AUV
path planning in time-variant underwater environment using differential evolution
algorithm. J. Mar. Sci. Appl. 17 (4), 585–591.
Mehto, A., Tapaswi, S., Pattanaik, K., 2020. A review on rendezvous based data
acquisition methods in wireless sensor networks with mobile sink. Wirel. Netw.
26 (4), 2639–2663.
Mirjalili, S., Mirjalili, S.M., Lewis, A., 2014. Grey wolf optimizer. Adv. Eng. Softw. 69,
46–61.
Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D.,
Kavukcuoglu, K., Asynchronous methods for deep reinforcement learning, in:
International Conference on Machine Learning, 2016, pp. 1928–1937.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., 2015. Human-level control
through deep reinforcement learning. Nature 518 (7540), 529–533.
Ni, J.J., Wu, L.Y., Shi, P.F., Yang, S.X., 2017. A dynamic bioinspired neural net-
work based real-time path planning method for autonomous underwater vehicles.
Comput. Intell. Neurosci. 2017.
Noguchi, Y., Maki, T., 2019. Path planning method based on artificial potential field
and reinforcement learning for intervention AUVs. In: 2019 IEEE Underwater
Technology (UT). IEEE, pp. 1–6.
Nussbaum, F., Stevens, G.T., Kelly, J.G., 1996. Sensors for a forward-looking high
resolution AUV sonar. In: Proceedings of Symposium on Autonomous Underwater
Vehicle Technology. IEEE, pp. 141–145.
Okereke, C., Mohamad, M.M., Wahab, N., A review of machine learning path planning
algorithms for Autonomous Underwater Vehicles (AUV) in Internet of Underwater
Things (IoUT), in: The 12th International Conference on Internet (ICONI 2020),
2020.
Pagac, D., Nebot, E.M., Durrant Whyte, H., 1998. An evidential approach to
map-building for autonomous vehicles. IEEE Trans. Robot. Autom. 14 (4), 623–629.
Patle, B.K., Pandey, A., Parhi, D.R.K., Jagadeesh, A., 2019. A review: On path planning
strategies for navigation of mobile robot. Def. Technol. 15 (4), 582–606.
Phanthong, T., 2015. Real time underwater obstacle avoidance and path re-planning
using simulated multi-beam forward looking sonar images for autonomous surface
vehicle. Eng. J. 19 (1), 107–123.
Do'stlaringiz bilan baham: |