Conflicts of Interest:
The authors declare no conflict of interest.
Appendix
In the following, the expressions for the calculation of the carrier sheet density (in units of cm
´
2
)
and the quantum capacitance for the 3D (bulk) case [
42
], the 2D case, and the 1D case [
42
], which have
been used in Section
2.3
, are summarized.
3D case
n
3D
sh
“
t
c
8
ż
0
g
3D
pεq f pε ´ qϕ
c
q
dε
(A1)
g
3D
p εq “
ν m
eff
?
2m
eff
ε
π
2
}
3
(A2)
f p ε ´ q ϕ
c
q “
1
1 ` exp
ˆ
ε ´ q ϕ
c
k
B
T
˙
(A3)
C
3D
q
“
ν q
2
t
c
m
eff
?
2m
eff
4k
B
Tπ
2
}
3
8
ż
0
?
ε ¨
cosh
´
2
ˆ
ε ´ q ϕ
c
2k
B
T
˙
d ε
(A4)
2D case
n
2D
sh
“
ÿ
i
8
ż
0
g
i
2D
f pε, E
i
q
dε
(A5)
g
i
2D
“
ν
i
m
effi
π
}
2
(A6)
f pε, E
i
q “
1
1 ` exp
ˆ
ε ` E
i
´
q ϕ
c
k
B
T
˙
(A7)
C
2D
q
“
q
2
π
}
2
ÿ
i
ν
i
m
effi
1 ` exp
ˆ E
i
´
qϕ
c
k
B
T
˙
(A8)
1D case
n
1D
sh
“
1
w
ÿ
i
8
ż
0
g
i
1D
f p ε, E
i
q
d ε
(A9)
g
i
1D
p εq “
ν
i
π
}
c
2m
effi
ε
(A10)
C
1D
q
“
q
2
w
?
2hk
B
T
ÿ
i
ν
i
?
m
effi
8
ż
0
1
?
ε
cosh
´
2
ˆ
ε ` E
i
´
q ϕ
s
2k
B
T
˙
d ε
(A11)
where ϕ
c
is the channel potential given by ´(E
C
´
E
F
)/q, q is the elementary charge, ε is the kinetic
energy of the electrons, g is the density of states (g
i
is the density of states in the i
th
subband), t
c
is the
GNR thickness, ν is the valley degeneracy factor, m
eff
is the density of states effective mass, f is the
Fermi–Dirac distribution function, E
i
is the position of the i
th
subband with respect to the conduction
Electronics 2016, 5, 3
15 of 17
band edge, k
B
is the Boltzmann constant, and T is the temperature. Note that the expression for the
quantum capacitance for the 2D case, i.e., Equation (A8), does not contain an integral since for the
expression of the sheet density, i.e., Equation (A5), an analytical solution can be derived.
In the ATLAS simulations, the basic semiconductor equations, i.e., Poisson’s equation, the current
equations for electrons and holes (using Equation (4) with the parameters given below Table
1
), and the
continuity equations, are solved self-consistently.
References
1.
Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [
CrossRef
] [
PubMed
]
2.
Wu, Y.; Jenkins, K.A.; Valdes-Garcia, A.; Farmer, D.B.; Zhu, Y.; Bol, A.A.; Dimitrakopoulos, C.; Zhu, W.;
Xia, F.; Avouris, P.; et al. State-of-the-art graphene high-frequency electronics. Nano Lett. 2012, 2, 3062–3067.
[
CrossRef
] [
PubMed
]
3.
Cheng, R.; Bai, J.; Liao, L.; Zhou, H.; Chen, Y.; Liu, L.; Lin, Y.-C.; Jiang, S.; Huang, Y.; Duan, X. High-frequency
self-aligned graphene transistors with transferred gate stacks. Proc. Natl. Acad. Sci. USA 2012, 109,
11588–11592. [
CrossRef
] [
PubMed
]
4.
Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496. [
CrossRef
] [
PubMed
]
5.
Schwierz, F. Graphene transistors: Status, prospects, and problems. Proc. IEEE 2013, 101, 1567–1584.
[
CrossRef
]
6.
Lemme, M.C.; Li, L.-J.; Palacios, T.; Schwierz, F. Two-dimensional materials for electronic applications.
MRS Bull. 2014, 39, 711–718. [
CrossRef
]
7.
Castro, E.V.; Novoselov, K.S.; Morozov, S.V.; Peres, N.M.R.; Lopes-dos-Santos, J.M.B.; Nilsson, J.; Guinea, F.;
Geim, A.K.; Castro-Neto, A.H. Biased bilayer graphene: Semiconductor with a gap tunable by the electric
field effect. Phys. Rev. Lett. 2007, 99, 216802. [
CrossRef
] [
PubMed
]
8.
Szafranek, B.N.; Fiori, G.; Schall, D.; Neumaier, D.; Kurz, H. Current saturation and voltage gain in bilayer
graphene field effect transistors. Nano Lett. 2012, 12, 1324–1328. [
CrossRef
] [
PubMed
]
9.
Han, M.Y.; Özyilmaz, B.; Zhang, Y.; Kim, P. Energy band-gap engineering of graphene nanoribbons.
Phys. Rev. Lett. 2007, 98, 206805. [
CrossRef
] [
PubMed
]
10.
Linden, S.; Zhong, D.; Timmer, A.; Aghdassi, N.; Franke, J.H.; Zhang, H.; Feng, X.; Müllen, K.; Fuchs, H.;
Chi, L.; et al. Electronic structure of spatially aligned graphene nanoribbons on Au(788). Phys. Rev. Lett. 2012,
108, 216801. [
CrossRef
] [
PubMed
]
11.
Liang, X.; Jung, Y.-S.; Wu, S.; Ismach, A.; Olynick, D.L.; Cabrini, S.; Bokor, J. Formation of bandgap and
subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography.
Nano Lett. 2010, 10, 2454–2460. [
CrossRef
] [
PubMed
]
12.
Berrada, S.; Nguyen, V.H.; Querlioz, D.; Saint-Martin, J.; Alarcon, A.; Chassat, C.; Bournel, A.; Dollfus, P.
Graphene nanomesh transistor with high on/off ratio and good saturation behavior. Appl. Phys. Lett. 2013,
103, 183509. [
CrossRef
]
13.
Raza, H.; Kan, E.C. Armchair graphene nanoribbons: Electronic structure and electric-field modulation.
Phys. Rev. B 2008, 77, 245434. [
CrossRef
]
14.
Yang, L.; Park, C.-H.; Son, Y.-W.; Cohen, M.L.; Louie, S.G. Quasiparticle energies and band gaps in graphene
nanoribbons. Phys. Rev. Lett. 2007, 99, 186801. [
CrossRef
] [
PubMed
]
15.
Gunlycke, D.; White, C.T. Tight-binding energy dispersions of armchair-edge graphene nanostripes.
Phys. Rev. B 2008, 77, 115116. [
CrossRef
]
16.
The International Technology Roadmap for Semiconductors. Available online: http://www.itrs.net
(accessed on 15 October 2015).
17.
Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. Chemically derived, ultrasmooth graphene nanoribbon
semiconductors. Science 2008, 319, 1229–1232. [
CrossRef
] [
PubMed
]
18.
Wang, X.; Ouyang, Y.; Li, X.; Wang, H.; Guo, J.; Dai, H. Room-temperature all-semiconducting sub-10-nm
graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 2008, 100, 206803. [
CrossRef
] [
PubMed
]
19.
Bai, J.; Duan, X.; Huang, Y. Rational fabrication of graphene nanoribbons using a nanowire etch mask.
Nano Lett. 2009, 9, 2083–2087. [
CrossRef
] [
PubMed
]
Electronics 2016, 5, 3
16 of 17
20.
Liao, L.; Bai, J.; Cheng, R.; Lin, Y.-C.; Jiang, S.; Huang, Y.; Duan, X. Top-gated graphene nanoribbon transistors
with ultrathin high-k dielectrics. Nano Lett. 2010, 10, 1917–1921. [
CrossRef
] [
PubMed
]
21.
Alam, K. Gate dielectric scaling of top gate carbon nanoribbon on insulator transistors. J. Appl. Phys. 2008,
104, 074313. [
CrossRef
]
22.
Imperiale, I.; Gnudi, A.; Gnani, E.; Reggiani, S.; Baccarani, G. High-frequency analog GNR-FET design
criteria. In Proceedings of the 2011 European Solid-State Device Research Conference (ESSDERC), Helsinki,
Finland, 12–16 September 2011; pp. 303–306.
23.
Harada, N.; Sato, S.; Yokoyama, N. Theoretical investigation of graphene nanoribbon field-effect transistors
designed for digital applications. Jpn. J. Appl. Phys. 2013, 52, 094301. [
CrossRef
]
24.
Liang, G.;
Neophytou, N.;
Lundstrom, M.S.;
Nikonov, D.E. Ballistic graphene nanoribbon
metal-oxide-semiconductor field-effect transistors: A full real-space quantum transport simulation.
J. Appl. Phys. 2007, 102, 054307. [
CrossRef
]
25.
Imperiale, I.; Bonsignore, S.; Gnudi, A.; Gnani, E.; Reggiani, S.; Baccarani, G. Computational study of
graphene nanoribbon FETs for RF applications. In Proceedings of the 2010 IEEE International Electron
Devices Meeting (IEDM), San Francisco, CA, USA, 6–8 December 2010; pp. 732–735.
26.
Fiori, G.; Iannaccone, G. Simulation of graphene nanoribbon field-effect transistors. IEEE Electron Device Lett.
2007
, 8, 760–762. [
CrossRef
]
27.
Goharrizi, A.Y.; Pourfarth, M.; Fathipour, M.; Kosina, H. Device performance of graphene nanoribbon
field-effect transistors in the presence of edge-line roughness. IEEE Trans. Electron Devices 2012, 59, 3527–3532.
[
CrossRef
]
28.
Kliros, G.S. Gate capacitance modeling and width-dependent performance of graphene nanoribbon
transistors. Microelctron. Eng. 2013, 112, 220–226. [
CrossRef
]
29.
Bruzzone, S.; Iannaccone, G.; Marzari, N.; Fiori, G. An open-source multiscale framework for the simulation
of nanoscale devices. IEEE Trans. Electron Devices 2014, 61, 48–53. [
CrossRef
]
30.
ATLAS User’s Manual—Device Simulation Software, Silvaco. Available online: http://dynamic.silvaco.
com/dynamicweb/jsp/downloads/DownloadManualsAction.do?req=silentmanuals&nm=atlas (accessed
on 15 October 2015).
31.
Schwierz, F.; Pezoldt, J.; Granzner, R. Two-dimensional materials and their prospects in transistor
applications. Nanoscale 2015, 7, 8261–8283. [
CrossRef
] [
PubMed
]
32.
Ruffieux, P.; Cai, J.; Plumb, N.; Patthey, L.; Prezzi, D.; Ferretti, A.; Molinari, E.; Feng, X.; Müllen, K.;
Pignedoli, C.A.; et al. Electronic structure of atomically precise graphene nanoribbons. ACS Nano 2012, 6,
6930–6935. [
CrossRef
] [
PubMed
]
33.
Chen, Y.-C.; de Oteyza, D.G.; Pedramrazi, Z.; Chen, C.; Fischer, F.R.; Crommie, M.F. Tuning the band gap of
graphene nanoribbons synthesized from molecular precursors. ACS Nano 2013, 7, 6123–6128. [
CrossRef
]
[
PubMed
]
34.
Fang, T.; Konar, A.; Xing, H.; Jena, D. Carrier statistics and quantum capacitance of graphene sheets and
ribbons. Appl. Phys. Lett. 2007, 91, 092109. [
CrossRef
]
35.
Granzner, R.; Polyakov, V.M.; Schwierz, F.; Kittler, M.; Luyken, R.J.; Rösner, W.; Städele, M. Simulation of
nanoscale MOSFETs using modified drift-diffusion and hydrodynamic models and comparison with Monte
Carlo results. Microelectron. Eng. 2006, 83, 241–246. [
CrossRef
]
36.
Szabo, A.; Rhyner, R.; Luisier, M. Ab-initio simulations of MoS
2
transistors: From mobility calculation to
device performance evaluation. In Proceedings of the 2014 IEEE International Electron Devices Meeting
(IEDM), San Francisco, CA, USA, 15–17 December 2014; pp. 725–728.
37.
Cao, W.; Kang, J.; Sarkar, D.; Liu, W.; Banerjee, K. Performance evaluation and design considerations of
2D semiconductor based FETs for sub-10 nm VLS. In Proceedings of the 2014 IEEE International Electron
Devices Meeting (IEDM), San Francisco, CA, USA, 15–17 December 2014; pp. 729–732.
38.
Liu, L.; Lu, Y.; Guo, J. On monolayer MoS
2
field-effect transistors at the scaling limit. IEEE Trans.
Electron Devices 2013, 60, 4133–4139. [
CrossRef
]
39.
Ancona, M.G. Electron transport in graphene from a diffusion-drift perspective. IEEE Trans. Electron Devices
2010
, 57, 681–689. [
CrossRef
]
40.
Betti, A.; Fiori, G.; Iannaccone, G. Drift velocity peak and negative differential mobility in high field transport
in graphene nanoribbons explained by numerical simulations. Appl. Phys. Lett. 2011, 99, 242108. [
CrossRef
]
Electronics 2016, 5, 3
17 of 17
41.
Caughey, D.M.; Thomas, R.E. Carrier mobilities in silicon empirically related to doping and field. Proc. IEEE
1967
, 52, 2192–2193. [
CrossRef
]
42.
Granzner, R.; Thiele, S.; Schippel, C.; Schwierz, F. Quantum effects on the gate capacitance of trigate SOI
MOSFETs. IEEE Trans. Electron Devices 2010, 57, 3231–3237. [
CrossRef
]
43.
Unluer, D.; Tseng, F.; Ghosh, A.W.; Stan, M.R. Monolithically patterned wide-narrow-wide all-graphene
devices. IEEE Trans. Nanotechnol. 2011, 10, 931–939. [
CrossRef
]
44.
Schwierz, F.; Liou, J.J. Modern Microwave Transistors; John Wiley & Sons: Hoboken, NJ, USA, 2003.
45.
Schwierz, F. Microwave Transistors: State of the Art in the 1980s, 1990s, 2000s, and 2010s. A Compilation of 1500
Top References; TU Ilmenau: Ilmenau, Germany, 2015; unpublished.
46.
Kranti, A.; Raskin, J.-P.; Armstrong, G.A. Optimizing FinFET geometry and parasitics for RF applications.
In Proceedings of the IEEE International SOI Conference, New Paltz, NY, USA, 6–9 October 2008; pp. 123–124.
47.
Chauhan, J.; Liu, L.; Lu, Y.; Guo, J. A computational study of high-frequency behavior of graphene field-effect
transistors. J. Appl. Phys. 2012, 111, 094313. [
CrossRef
]
48.
Paussa, A.; Geromel, M.; Palestri, P.; Bresciani, M.; Esseni, D.; Selmi, L. Simulation of graphene nanoscale
RF transistors including scattering and generation/recombination mechanisms. In Proceedings of the 2011
International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011; pp. 271–274.
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Document Outline
Do'stlaringiz bilan baham: |