Simulation of 50-nm Gate Graphene Nanoribbon Transistors


Figure 5. Steady-state characteristics of the simulated 50-nm gate single-channel GNR MOSFET: (a



Download 1,99 Mb.
Pdf ko'rish
bet12/17
Sana31.12.2021
Hajmi1,99 Mb.
#271195
1   ...   9   10   11   12   13   14   15   16   17
Bog'liq
Inomjonga makola

Figure 5. Steady-state characteristics of the simulated 50-nm gate single-channel GNR MOSFET: (a

transfer characteristics; and (b) output characteristics. 

 

Top gate


Gate dielectric

GNR


Substrate

z

y

Source


Top gate

Drain


z

x

Source


Gate stripe

Drain


Top gate

IR gate


z

x

Figure 5.

Steady-state characteristics of the simulated 50-nm gate single-channel GNR MOSFET:

(a) transfer characteristics; and (b) output characteristics.



Electronics 2016, 5, 3

9 of 17


The output characteristics of the same transistor depicted in Figure

5

b shows a pronounced



saturation of the drain current and a low drain conductance of 76 µS/µm at V

DS

= 1 V and



V

GS´e f f


= 0.5 V. The good current saturation is caused by the semiconducting nature of the GNR

channel and marks, in addition to the high on-off ratio, an important improvement compared to

GFETs with gapless large-area graphene channels which suffer from a weak saturation and a large

drain conductance.

To get an impression on RF potential of GNR FETs, we also perform small-signal analyses for the

50-nm gate single-channel GNR MOSFET and calculate its small-signal current gain h

21

and unilateral



power gain U at a frequency of 10 GHz for V

DS

= 1 V and varying V



GS

-V

Th



. The cutoff frequency f

T

and the maximum frequency of oscillation f



max

are then obtained by extrapolating h

21

and U with the



characteristic slope of ´20 dB/dec to zero dB [

44

]. A peak cutoff frequency of 215 GHz is obtained at



V

GS´e f f


around 0.56 V. Figure

6

a compares this result with the best experimental f



T

data reported for

competing RF FETs, i.e., GFETs, Si MOSFETs, and III–V HEMTs (high electron mobility transistor) with

comparable gate lengths. As can be seen, in terms of f

T

our GNR MOSFET performs worse compared



to best GFETs and the other competing RF FETs. This was to be expected because of the relatively low

mobility in the GNR channel, particularly compared to the gapless large-area graphene channels of

GFET and the InGaAs channels (with high In content) of the III–V HEMTs.

Electronics 20165, 3 

9 of 17 


 

The output characteristics of the same transistor depicted in Figure 5b shows a pronounced 

saturation of the drain current and a low drain conductance of 76 µS/µm at V

DS

 = 1 V and  



V

GS-eff


 = 0.5 V. The good current saturation is caused by the semiconducting nature of the GNR channel 

and marks, in addition to the high on-off ratio, an important improvement compared to GFETs with 

gapless large-area graphene channels which suffer from a weak saturation and a large drain 

conductance. 

To get an impression on RF potential of GNR FETs, we also perform small-signal analyses for 

the 50-nm gate single-channel GNR MOSFET and calculate its small-signal current gain h

21

 and 


unilateral power gain U at a frequency of 10 GHz for V

DS

 = 1 V and varying V



GS

-V

Th

. The cutoff 



frequency f

T

 and the maximum frequency of oscillation f



max

 are then obtained by extrapolating h

21

 and 


U with the characteristic slope of −20 dB/dec to zero dB [44]. A peak cutoff frequency of 215 GHz is 

obtained at V

GS-eff 

around 0.56 V. Figure 6a compares this result with the best experimental f

T

 data 


reported for competing RF FETs, i.e., GFETs, Si MOSFETs, and III–V HEMTs (high electron mobility 

transistor) with comparable gate lengths. As can be seen, in terms of f

T

 our GNR MOSFET performs 



worse compared to best GFETs and the other competing RF FETs. This was to be expected because 

of the relatively low mobility in the GNR channel, particularly compared to the gapless large-area 

graphene channels of GFET and the InGaAs channels (with high In content) of the III–V HEMTs. 

 

 



(a) (b)


Download 1,99 Mb.

Do'stlaringiz bilan baham:
1   ...   9   10   11   12   13   14   15   16   17




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish