References
Abramov, A. M. (2010). Toward a history of mathematics education reform in Soviet
Schools (1960s–1980s). In: A. Karp and B. Vogeli (Eds.), Russian Mathematics
Education: History and World Significance (pp. 87–140). London, New Jersey,
Singapore: World Scientific.
Alexandrov, A. D. (1980). O geometrii [On geometry]. Matematika v shkole, 3, 56–62.
Alexandrov, A. D. (1981). Chto takoe mnogogrannik [What is a polyhedron?].
Matematika v shkole, 1, 8–16, 2, 19–26.
Alexandrov, A. D. (1984a). O ponyatii mnozhestva v kurse geometrii [On the concept
of the set in the course in geometry]. Matematika v shkole, 1, 47–52.
Alexandrov, A. D (1984b). Tak chto zhe takoe vektor? [So, what is a vector?].
Matematika v shkole, 5, 39–46.
Alexandrov, A. D., Werner, A. L., and Ryzhik, V. I. (1981). Nachala stereometrii, 9
[Elementary Solid Geometry, 9]. Moscow: Prosveschenie.
Alexandrov, A. D., Werner, A. L., and Ryzhik, V. I. (1983). Geometriya 9–10 [Geometry
9–10]. Moscow: Prosveschenie.
Alexandrov, A. D., Werner, A. L., and Ryzhik, V. I. (1992). Geometriya 7–9 [Geometry
7–9]. Moscow: Prosveschenie.
Alexandrov, A. D., Werner, A. L., and Ryzhik, V. I. (1998). Geometriya 10–11
[Geometry 10–11]. Moscow: Prosveschenie.
Alexandrov, A. D., Werner, A. L., and Ryzhik, V. I. (2006). Geometriya 10–11
[Geometry 10–11]. Moscow: Prosveschenie.
Alexandrov, A. D., Werner, A. L., and Ryzhik, V. I. (2008). Geometriya 7 [Geometry
7]. Moscow: Prosveschenie.
March 9, 2011
15:1
9in x 6in
Russian Mathematics Education: Programs and Practices
b1073-ch03
126
Russian Mathematics Education: Programs and Practices
Alexandrov, A. D., Werner, A. L., and Ryzhik, V. I. (2009). Geometriya 8 [Geometry
8]. Moscow: Prosveschenie.
Alexandrov, A. D., Werner, A. L., and Ryzhik, V. I. (2010). Geometriya 9 [Geometry
9]. Moscow: Prosveschenie.
Atanasyan, L. S., Poznyak, E. G., et al. (2004). Geometriya 7–9 [Geometry 7–9].
Moscow: Prosveschenie.
Atanasyan, L. S., Poznyak, E. G., et al. (2006). Geometriya 10–11. [Geometry 10–11].
Moscow: Prosveschenie.
Barbin, E. (2009). The notion of magnitude in teaching: the “New Elements” of
Arnauld and his inheritance. International Journal for the History of Mathematics
Education, 4(2), 1–18.
Boltyansky, V. G., and Yaglom, I. M. (1965). Shkolnyi matematicheskii kruzhok pri
MGU i moskovskie matematicheskie olimpiady [The school math circle at Moscow
State University and the Moscow mathematics Olympiads]. In: A. A. Leman
(Ed.), Sbornik zadach moskovskikh matematicheskikh olimpiad (pp. 3–46). Moscow:
Prosveschenie.
Dorofeev, G. V., and Scharygin, I. F. (Eds.). (2002). Matematika 6. Chast’II. Uchebnik
dlya obscheobrazovatel’nykh uchrezhdenii. [Mathematics 6. Part II. Textbook for
General Educational Institutions]. Moscow: Drofa-Prosveschenie.
Fehr, H. F. (1973). Geometry as a secondary school subject. In: K. Henderson (Ed.),
Geometry in the Mathematics Curriculum. Thirty-Sixth Yearbook (pp. 369–380).
Reston, VA: National Council of Teachers of Mathematics.
Glazkov, Yu, A., Nekrasov, V. B., and Yudina, I. I. (1991). O prepodavanii geometrii v
Do'stlaringiz bilan baham: |