Министерство высшего и среднего специального образования республики узбекистан ўзбекистон республикаси


MATHEMATICAL MODELLING AND STABILITY OF NONLINEAR MECHANICAL



Download 6,3 Mb.
Pdf ko'rish
bet91/202
Sana23.02.2022
Hajmi6,3 Mb.
#161365
TuriКнига
1   ...   87   88   89   90   91   92   93   94   ...   202
Bog'liq
1 китоб СамДАКИ compressed

MATHEMATICAL MODELLING AND STABILITY OF NONLINEAR MECHANICAL 
SYSTEM IN HARMONIC EXCITATIONS 
Buranov Hudayor Mahmadiyorovich
1
, Khodjabekov Muradjon Usarovich

Uzbekistan, Samarkand State University
1
, Uzbekistan, Samarkand State Architectural and Civil 
Engineering Institute
2
 
Annotation. This work dedicated that investigation condition and border of stability of 
nonlinear mechanical system. 
Results and discussions. We will use the free body diagram method [1] to derive the 
differential equation governing the motion of the nonlinear mechanical system of fig.-1 using 
as the 
generalized coordinate. Summing moments about the pin support leads to 


(1) 
(
)
(
)
̇ (
)
̈
̈ (
)
(2) 
where
is characteristics of dissipation of hysteretic type spring [2]; 
and 
are coefficients linearization;
is stiffness; 
is length of the 
beam; 
is amplitude of harmonic excitations; 
is damping coefficient; 
is the mass of the beam. 
We will write following from (2): 
̈ ̇
(3) 
(3) is the differential equation of the given system in fig.-1. We able to analyze behavior of 
given dynamic system completely from received differential equation. 
In [3] single and multi-degree of hysteretic dynamic systems have been analyzed completely 
and method of analyzing has been shown. We will use this method to analyze the given dynamic 
system. Then we will investigate normal equation. For this we will choose (3) the differential 
equation‘s solution as following: 
( ) 
(4) 
where 
are amplitude and phase of 
and they are slowly changing functions, namely 
̈ ̈ ̇ ̇

We will calculate 
̇ ̈
from (4) and put in (3). 
̇ ( ̇) ̇
( ̇)
(5) 
We will receive followings from (5): 
̇
(6) 
̇
Received (6) are normal equations of the given system. 
We will investigate the steady-state solution. For this 
̇ ̇
will be put in (6). 


146 

We use vertical tangents method [4] to investigate the condition and border of stability. 
From (8) we will write following equation: 
(
)
(
)


(9) equation gives us that border of stability. 
We will write following square form of (9). 
(
)
(
)
where 
The steady-state solution will be stable when the sign of (10) is positive. For this we will write 
following matrix from (10): 






where 
(
)
(
)
(10) Square form will be positive when the matrix form‘s main diagonal matrixes are positive, 
namely 







-








(
)
The received 
is condition of stability of steady-state solution. 
Conclusions. We can say that from (9) and (11), border and condition of stability of steady-
state solution depend on stiffness, damping coefficient, mass and amplitude. 

Download 6,3 Mb.

Do'stlaringiz bilan baham:
1   ...   87   88   89   90   91   92   93   94   ...   202




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish