References
[1]
Winkler MT, Wang W, Gunawan O, Hovel HJ, Todorov TK, Mitzi DB. Optical de-
signs that improve the e
fficiency of Cu
2
ZnSn(S,Se)
4
solar cells. Energy Environ Sci
2013;3(E7):1029
–36
.
[2] Sandip Das, Krishna C Mandal, Raghu N Bhattacharya, Earth-Abundant Cu
2
ZnSn(S,
Se)
4
(CZTSSe) Solar Cells.
[3]
Chen S, Gong XG, Walsh A, Wei S-H. Crystal and electronic band structure of
Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers:
first-principles insights. Appl
Phys Lett 2009;94(E4). [041903]
.
[4] Antifreeze, cheap materials may lead to low-cost solar energy, Oregon State
University; 2013.
[5]
Guen L, Glaunsinger WS. Electrical, magnetic, and EPR studies of the quaternary
chalcogenides Cu
2
AIIBIVX
4
prepared by iodine transport. J Solid State Chem
1980;35:10
–21
.
[6]
Matsushita H, Ichikawa T, Katsui A. Structural, thermodynamical and optical
properties of Cu
2
-II-IV-VI
4
quaternary compounds". J Mater Sci 2005;40(E8)
.
[7]
Ichimura Masaya, Nakashima Yuki. Analysis of atomic and electronic structures of
Cu
2
ZnSnS
4
based on
first-principle calculation. Jpn J Appl Phys
2009;48(E9):090202
.
[8]
Katagiri Hironori, Saitoh Kotoe, Washio Tsukasa, Shinohara Hiroyuki, Kurumadani
Tomomi, Miyajima Shinsuke. Development of thin
film solar cell based on
Cu
2
ZnSnS
4
thin
films. Sol Energy Mater Sol Cells 2001;65(E8):141–8. [8]
.
[9]
Katagiri Hironori, Jimbo Kazuo, Maw Win Shwe, Oishi Koichiro, Yamazaki
Makoto, Araki Hideaki, Takeuchi Akiko. Development of CZTS-based thin
film
solar cells. Thin Solid Films 2009;517(E7):2455
–60. [5]
.
[10]
Todorov TK, Reuter KB, Mitzi DB. High-e
fficiency solar cell with earth-abundant
liquid-processed absorber. Adv Mater 2010;22(20):E156
.
[11]
Todorov Teodor, Mitzi David. Shedding light on new frontiers of solar cell semi-
conductors. IBM Retrieved 2012. [22 August]
.
[12] Ho
ffman R, Materials for CZTS photovoltaic devices. In The NNIN REU Research
Accomplishments; 2009. p. 82
–83.
[13]
Riha SC, Parkinson BA, Prieto AL. Solution-based synthesis and characterization of
Cu
2
ZnSnS
4
nanocrystals. J Am Chem Soc 2009;131(34):12054
–5
.
[14]
Steinhagen C, Panthani MG, Akhavan V, Goodfellow B, Koo B, Korgel BA.
Synthesis of Cu
2
ZnSnS
4
nanocrystals for use in low-cost photovoltaics. J Am Chem
Soc 2009;131(35):12554
–5
.
[15]
Hall SR, Szymanski JT, Stewart JM. Kesterite Cu2(Zn, Fe) SnS4 and stannite
Cu
2
(Fe, Zn) SnS
4
structurally similar but distinct minerals. Can Mineral
1978;16:131
–7
.
[16]
Karimi M, Eshraghi MJ, Jahangir V. A facile and green synthetic approach based
on deep eutectic solvents toward synthesis of CZTS nanoparticles. Mater Lett
2016;171:100
–3
.
[17]
Song Xiangbo, Ji Xu, Li Ming, Lin Weidong, Luo Xi, Zhang Hua. A review on de-
velopment prospect of CZTS based thin
film solar cells. Int J Photo
2014;2014(Article ID 613173):11
.
[18]
Suryawanshi MP, Agawane GL, Bhosale SM, Shin SW, Patil PS, Kim JH, Moholkar
AV. CZTS based thin
film solar cells: a status review. Adv Perform Mater
2013;28:98
–109
.
[19]
Vos A De. Detailed balance limit of the e
fficiency of tandem solar cells. J Phys D
1980;13(839)
.
[20] Márquez J, Neuschitzer M, Dimitrievska M, Gunder R, Haass S, Werner M,
Romanyuk YE, Schorr S, Pearsall1 NM, Forbes1 I, Systematic compositional
changes and their in
fluence on lattice and optoelectronic properties of Cu
2
ZnSnSe
4
kesterite solar cells.
[21]
Ito K, Nakazawa T. Electrical and optical properties of stannite-type quaternary
semiconductor thin
films. Jpn J Appl Phys 1988;27(11):2094–7
.
[22]
Tsuyoshi Maeda. First-principles study on Cd doping in Cu
2
ZnSnS
4
and
Cu
2
ZnSnSe
4
. Jpn J Appl Phys 2012;51(10NC11)
.
[23]
Shin B, Gunawan O, Zhu Y, Bojarczuk NA, Chey SJ, Guha S. Thin
film solar cell
with 8.4% power conversion e
fficiency using an earth-abundant
Cu
2
ZnSnS
4
absorber. Prog Photovolt: Res Appl 2011;21(1):72
–6
.
[24]
Xiao Zhen-Yu, Li Yong-Feng, Yao Bin, Deng Rui, Ding Zhan-Hui, Wu Tom, Yang
Gang, Li Chun-Ran, Dong Zi-Yuan, Liu Lei, Zhang Li-Gong, Zhao Hai-Feng.
Bandgap engineering of Cu
2
CdxZn
12
xSnS
4
alloy for photovoltaic applications: a
complementary experimental and
first-principles study. J Appl Phys
2013;114(183506)
.
[25]
Ichimura W BaoandM. Prediction of the band o
ffsets at the CdS/Cu2ZnSnS4 in-
terface based on the
first-principles calculation. Jpn J Appl Phys 2012;51(10).
[10NC31
–10NC314]
.
[26]
Sellers DG, Polly S, Hubbard SM, Doty MF. Analyzing carrier escape mechanisms
in InAs/GaAs quantum dot p-i-n junction photovoltaic cells. Appl Phys Lett
2014;104(223903)
.
[27]
Haight R, Barkhouse A, Gunawan O, et al. Band alignment at the Cu
2
ZnSn (SxSe1-
x)4/CdS interface. Appl Phys Lett 2011;98(25):253502. [Article ID]
.
[28]
Chen S, Walsh A, Yang JH, et al. Compositional dependence of structural and
electronic properties of Cu2ZnSn(S,Se)4 alloys for thin
film solar cells [Article ID].
Phys Rev B 2011;83(12):125201
.
[29] Sahu SN, Pandey RK, Chandra S, ookhandbook of semiconductor electrodeposi-
tion, Marcel Dekker, New York; 1996.
[30] Shin B, Gunawan O, Zhu Y, Bojarczuk NA, Chey SJ, Guha S, Prog Photovolt. Res
Appl 2011.
http://dx.doi.org/10.1002/pip.1174
.
[31]
Katagiri H, Jimbo K, Yamada S, Kamimura T, Maw WS, Fukano T, Ito T, Motohiro
T. Appl Phys Express 2008;041201
.
[32]
Maeda K, Tanaka K, Fukui Y, Uchiki H. Sol Energy Mater Sol Cells
2011;95:2855
–60
.
[33] Moholkar AV, Shinde SS, Babar AR, Sim K, Lee H, Rajpure KY, Patil PS, Bhosale
CH, Kim JH, J Alloys Compd, 509. p. 7439
–7446.
[34] Prabhakar T, Nagaraju J, Proceedings 37th IEEE PVSC 2011 (Seattle, USA); 2011.
[35]
Steinhagen C, Panthani MG, Akhavan V, Goodfellow B, Koo B, Korgel BJ. Am
Chem 2009:12554
–5
.
[36]
Zhou Z, Wang Y, Xu D, Zhang Y. Sol Energy Mater Sol Cells 2010;94:2042
–5
.
[37]
Wangperawong A, King JS, Herron SM, Tran BP, Pangan-Okimoto K, Bent SF. Thin
Solid Films 2011;519:2488
–92
.
[38]
Scragg JJ, Dale PJ, Peter LM, Zoppi G, Forbes I. Phys Stat Sol B 2008;245:1772
–8
.
[39]
Lincot D. Electrodeposition of semiconductors. Thin Solid Films
2005;487(1
–2):40–8
.
[40]
Scragg JJ, Dale PJ, Peter LM. Towards sustainable materials for solar energy
conversion: preparation and photo electrochemical characterization of Cu
2
ZnSnS
4
.
Electrochem Commun 2008;10(4):639
–42
.
[41]
Araki H, Kubo Y, Jimbo K, et al. Preparation of Cu
2
ZnSnS
4
thin
films by sulfur-
ization of co-electroplated Cu-Zn-Sn precursors. Phys Status Solidi C
2009;6(5):1266
–8
.
[42]
Scragg JJ, Berg DM, Dale PJ. A 3.2% e
fficient Kesterite device from electro-
deposited stacked elemental layers. J Electroanal Chem 2010;646(1
–2):52–9
.
[43]
Schurr R, Hölzing A, Jost S, et al. The crystallization of Cu
2
ZnSnS
4
thin
film solar
cell absorbers from co-electroplated Cu-Zn-Sn precursors. Thin Solid Films
2009;517(7):2465
–8
.
[44]
Ahmed S, Reuter KB, Gunawan O, Guo L, Romankiw LT, Deligianni H. A high
e
fficiency electrodeposited Cu
2
ZnSnS
4
solar cell. Adv Energy Mater
2012;2(2):253
–9
.
[45]
Washio T, Shinji T, Tajima S, et al. 6% E
fficiency Cu
2
ZnSnS
4
-based thin
film solar
cells using oxide precursors by open atmosphere type CVD
”. J Mater Chem
2012;22(9):4021
–4
.
[46] Katagiri H, Jimbo K, Moriya K, Tsuchida K, Solar cell without environmental
pollution by using CZTS thin
film. In: Proceedings of the 3rd world conference on
photovoltaic energy conversion, 2873; 2003. p. 2874
–2879.
[47]
Shi Chengwu, Shi Gaoyang, Chen Zhu, Yang Pengfei, Yao Min. Mater Lett
2012;73:89
–91
.
[48] Friedlmeier TM, Wieser N, Walter T, Dittrich H, Schock H-D, Heterojunctions
based on Cu
2
ZnSnS
4
and Cu
2
ZnSnSe
4
thin
films. In: Proceedings of the 14th
European photovoltaic solar energy conference; 1997. p. 1242
–1245.
[49]
Jackson P, Hariskos D, Lotter E, et al. New world record e
fficiency for Cu (In, Ga)
Se
2
thin-
film solar cells beyond. Progress Photovolt: Res Appl 2011;19(7):894–7
.
[50]
Weber A, Krauth H, Perlt S, et al. Multi-stage evaporation of Cu
2
ZnSnS
4
thin
films.
Thin Solid Films 2009;517(7):2524
–6
.
[51]
Wang K, Gunawan O, Todorov T, et al. Thermally evaporated Cu
2
ZnSnS
4
solar
cells. Appl Phys Lett 2010;97(14):143508
.
[52]
Yang Z. Research on one-step Preparation of CZTS
films and electrochemical op-
tical properties [M.S. thesis]. Dalian Univ Technol 2011
.
[53]
Momose N, Htay MT, Yudasaka T, et al. Cu
2
ZnSnS
4
thin
film solar cells utilizing
sulfurization of metallic precursor prepared by simultaneous sputtering of metal
targets. Jpn J Appl Phys 2011;50(1). [Article ID 01BG09]
.
[54]
Jimbo K, Kimura R, Kamimura T, et al. Cu
2
ZnSnS
4
-type thin
film solar cells using
abundant materials. Thin Solid Films 2007;515(15):5997
–9
.
[55]
Katagiri H, Jimbo K, Yamada S, et al. Enhanced conversion e
fficiencies of
Cu
2
ZnSnS
4
-based thin
film solar cells by using preferential etching technique. Appl
Phys Express 2008;1(4):041201. [Article ID]
.
[56]
Muhunthan N, Singh OP, Singh S, Singh VN. Growth of CZTS thin
films by co-
sputtering of metal targets and sulfurization in H
2
S. Int J Photoenergy
2013;2013:7. [Article ID 752012]
.
[57]
Zhang S. CZTS thin
film and it's research progress of solar cell. Eng Technol
2010;no. 8:67
–9
.
[58]
Moholkar AV, Shinde SS, Babar AR, et al. Development of CZTS thin
films solar
cells by pulsed laser deposition: in
fluence of pulse repetition rate. Sol Energy
2011;85(7):1354
–63
.
[59]
Tanaka K, Oonuki M, Moritake N, Uchiki H. Cu
2
ZnSnS
4
thin
film solar cells pre-
pared by non-vacuum processing. Sol Energy Mater Sol Cells 2009;93(5):583
–7
.
[60]
Tanaka K, Fukui Y, Moritake N, Uchiki H. Chemical composition dependence of
morphological and optical properties of Cu
2
ZnSnS
4
thin
films deposited by sol-gel
sulfurization and Cu
2
ZnSnS
4
thin
film solar cell efficiency. Sol Energy Mater Sol
Cells 2011;95(3):838
–42
.
[61]
Barkhouse DAR, Gunawan O, Gokmen T, Todorov TK, Mitzi DB. Device char-
acteristics of a 10.1% hydrazine-processed Cu
2
ZnSn (Se, S)
4
solar cell. Prog
Photovolt: Res Appl 2012;20(1):6
–11
.
[62]
Li Ji, Du Qingyang, Liu Weifeng, Jiang Guoshun, Feng Xuefei, Zhang Wenhua, Zhu
Junfa, Zhu Changfei. The Band O
ffset at CdS/Cu
2
ZnSnS4 Heterojunction Interface.
Electron Mater Lett 2012;8(4):365
–7
.
[63]
Meng Lei, Li Yongfeng, Yao Bin, Ding Zhanhui, Yang Gang, Liu Ruijian, Deng Rui,
Liu Lei. Visible-blind ultraviolet photodetector based on p-Cu
2
CdSnS
4
/n-ZnS het-
erojunction with a type-I band alignment. J Appl Phys Vol 2016;120(235306)
.
[64]
Jia Jinhuan, Li Yongfeng, Yao Bin, Ding Zhanhui, Deng Rui, Jiang Yuhong, Sui
Yingrui. Band o
ffsets of Ag
2
ZnSnSe
4
/CdS heterojunction: an experimental and
first-principles study. J Appl Phys 2017;121(215305)
.
[65]
Dong Zi-Yuan, Li Yong-Feng, Yao Bin, Ding Zhan-Hui, Yang Gang, Deng Rui, Fang
Xuan, Wei Zhi-Peng, Liu Lei. An experimental and
first-principles study on band
alignments at interfaces of Cu
2
ZnSnS
4
/CdS/ZnO heterojunctions. J Phys D: Appl
Phys 2014;47(075304)
.
[66]
Nagoya1 A, Asahi R, Kresse G. First-principles study of Cu2ZnSnS4 and the related
band o
ffsets for photovoltaic applications. J Phys: Condens Matter, Vol
2011;23(404203)
.
M. Ravindiran, C. Praveenkumar
Do'stlaringiz bilan baham: