Beginning Anomaly Detection Using


Intro to Keras: A Simple Classifier Model



Download 26,57 Mb.
Pdf ko'rish
bet72/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   68   69   70   71   72   73   74   75   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

 Intro to Keras: A Simple Classifier Model

Before you get started, it is recommended that you have the GPU version of TensorFlow 

installed along with all of its dependencies, including CUDA and cuDNN. While they are 

not necessarily required to train deep learning models, having a GPU helps to massively 

reduce training time. Both TensorFlow and PyTorch utilize CUDA and cuDNN to access 

the GPU while training, and Keras runs on top of TensorFlow.

If you have any questions about Keras, feel free to refer to Appendix A to get a better 

understanding of how Keras works and of the functionality that it offers.

Chapter 3   IntroduCtIon to deep LearnIng



85

Here are the exact versions of the necessary Python 3 packages used:

•  tensorflow-gpu version 1.10.0

•  keras version 2.0.8

•  torch version 0.4.1 (this is PyTorch)

•  CUDA version 9.0.176

•  cuDNN version 7.3.0.29

You will create, train, and evaluate a deep learning architecture known as a 

convolutional neural network (CNN) in Keras using the MNIST data set. You don’t need 

to download this data set since it is included within TensorFlow.

The MNIST data set, or the Modified National Institute of Standards and Technology 

data set, is a large collection of handwritten images used to train computer vision and 

image processing models such as the CNN. It is a common data set to start with and is 

basically like the “hello world” data set of computer vision.

The data set contains 60,000 training images and 10,000 testing images of 

handwritten digits 0-9, each with a dimension of 28x28 pixels.

First, import all the dependencies (Figure 

3-14


).


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   68   69   70   71   72   73   74   75   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish