Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet80/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   76   77   78   79   80   81   82   83   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

filter, or kernel

The filter goes over the first 2x2 region in the image and sums the element-wise 

multiplication of the values in the filter and the values in the 2x2 region of the image. 

This value is the first element of the feature map, which is a 4x4 layer image. Given an 



nxn filter and mxm image, your feature map dimensions will be an m-n+1 x m-n+1 

dimensional image. In this case, your image is 5x5 and the kernel is 2x2, so the feature 

map is 5 – 2 + 1 = 4x4 pixels.

The filter goes through each region in the image pixel by pixel, as shown in  

Figure 

3- 36


.

Figure 3-35.  An example of one multiplication of the 2x2 filter on a 2x2 section 

of the input image. The filter weights are applied element-wise and produce an 

output value that is part of the feature map–the output of this convolutional layer

Chapter 3   IntroduCtIon to deep LearnIng




97

The filter continues doing this until it reaches the right side of the image. After  

that, the filter goes one down and starts again from the left side of the image, like in  

Figure 


3- 37

.

Figure 3-36.  After the operation in Figure 



3-35

, the filter moves to the next set of 

data to multiply over, producing the second value in the feature map

Chapter 3   IntroduCtIon to deep LearnIng




98

From here, the filter continues moving right in a pixel by pixel fashion  

(see Figure 

 

3- 38



).

Figure 3-37.  Showing what happens after the filter reaches the right-most side of 

the image. It moves down one (in this case, at least; you can specify how much you 

want the filter to move as a parameter when calling this layer) and then continues 

its operations as usual

Chapter 3   IntroduCtIon to deep LearnIng




99

Once it reaches the end, it goes back to the first column and down one row and 

continues its operations until it reaches the bottom right region (see Figure 

3-39


).

Figure 3-38.  The filter continues moving as normal, adding more values to the 

feature map

Chapter 3   IntroduCtIon to deep LearnIng




100

The feature map doesn’t make much sense due to the randomness of the weights.

After the two convolutional layers, you run into the MaxPooling2D layer. 


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   76   77   78   79   80   81   82   83   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish