Beginning Anomaly Detection Using


rectified linear unit (ReLU)



Download 26,57 Mb.
Pdf ko'rish
bet83/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   79   80   81   82   83   84   85   86   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

rectified linear unit (ReLU) in the first 

dense layer, to 



softmax in the second.

Mathematically, the 



ReLU function is defined as y = max(0, x), so when the node 

calculates the dot products between the input and the weights and adds the bias, it 

simply outputs whatever is bigger between 0 or the calculation.

The graph for ReLU looks like Figure 

3-42

.

Figure 3-41.  Showing what a flatten layer does to an input 3x3 image



Chapter 3   IntroduCtIon to deep LearnIng


103

The general formula for softmax is shown in Figure 

3-43

.

As for the 



optimizer, it is set to the Adam optimizer, a type of gradient-based 

optimizer. By default, the parameter known as the 



learning rate is set to 0.001. Recall 

that the learning rate helps determine the step size taken by the optimization algorithm 

to see how much to adjust the weights by.

After executing the code in Figure 

3-43

, you get the output in Figure 



3-44

.


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   79   80   81   82   83   84   85   86   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish