Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet85/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   81   82   83   84   85   86   87   88   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Figure 3-48.  Code to generate the AUC score for this model based on the test set

Figure 3-49.  Code to see what the predictions actually look like before rounding 

them

Chapter 3   IntroduCtIon to deep LearnIng




109

The data values for the predictions for every other class besides the one it predicts 

correctly are so small that rounding them off is insignificant. The AUC score is shown in 

Figure 


3-51

.

That’s a really good AUC score! This score indicates that this model is really good at 



identifying handwritten digits, provided they’re in a similar format to the MNIST data set 

you used during training.

Referring back to the convolutional layers, let’s run some code to see what the feature 

maps look like after the first two convolutional layers compared to the original image.

Run the code in Figure 

3-52


 and look at the output in Figure 

3-53


.

Figure 3-50.  The output for running the code in Figure 

3-49

Figure 3-51.  The generated AUC score for the model. This is the output of running 

the code in Figure 

3-48

Chapter 3   IntroduCtIon to deep LearnIng




110


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   81   82   83   84   85   86   87   88   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish