Beginning Anomaly Detection Using


IURP VNOHDUQPHWULFV LPSRUW



Download 26,57 Mb.
Pdf ko'rish
bet93/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   89   90   91   92   93   94   95   96   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

IURP

VNOHDUQPHWULFV



LPSRUW

URFBDXFBVFRUH

SUHGV >@

\BWUXH >@

7HVWWKHPRGHO

PRGHOHYDO 6HWPRGHOWRHYDOXDWLRQPRGH



ZLWK

WRUFKQRBJUDG 

FRUUHFW 

WRWDO 



IRU

LPDJHVODEHOV



LQ

WHVWBORDGHU

LPDJHV LPDJHVWR GHYLFH

ODEHOV ODEHOVWR GHYLFH

RXWSXWV PRGHO LPDJHV

BSUHGLFWHG WRUFKPD[ RXWSXWVGDWD

WRWDO ODEHOVVL]H 

FRUUHFW  SUHGLFWHG  ODEHOV VXP LWHP 

GHWDFKHGBSUHG SUHGLFWHGGHWDFK FSX QXPS\

GHWDFKHGBODEHO ODEHOVGHWDFK FSX QXPS\



IRU

I

LQ UDQJH

OHQ GHWDFKHGBSUHG 

SUHGVDSSHQG GHWDFKHGBSUHG>I@

\BWUXHDSSHQG GHWDFKHGBODEHO>I@

SULQW


7HVW$FFXUDF\RIWKHPRGHORQWKHWHVWLPDJHV

^` IRUPDW FRUUHFWWRWDO

SUHGV QSH\H QXPBFODVVHV >SUHGV@

\BWUXH QSH\H QXPBFODVVHV >\BWUXH@

DXF URFBDXFBVFRUH SUHGV\BWUXH

SULQW


$8&^`IRUPDW DXF

6DYHWKHPRGHOFKHFNSRLQW

WRUFKVDYH PRGHOVWDWHBGLFW  S\WRUFKBPQLVWBFQQFNSW

Figure 3-65.  Code to evaluate the model and generate the AUC score

Chapter 3   IntroduCtIon to deep LearnIng




121

The resulting output is shown in Figure 

3-66

.

Now you a bit more about how to create and train your own CNN in PyTorch. 



PyTorch is a bit harder to learn than Keras, which aims to make everything quite 

readable and simple, having abstracted all of the more complicated bits of code. 

TensorFlow and PyTorch are both low-level APIs that require more code to be written 

because of the lack of abstraction, but offer more flexibility in controlling exactly how 

you want everything to be. Between the two, PyTorch is easier to debug if you’re using 

the debugging tool in PyCharm. In the end, it’s all a matter of preference, although 

TensorFlow and PyTorch both perform faster on larger data sets.

Figure 3-66.  The generated accuracy score on the test set and the AUC score for 

the model

Chapter 3   IntroduCtIon to deep LearnIng




122

If you would like to explore PyTorch further, check out Appendix B, where we cover 

a more refined way to create models, train, and test, as well as the general functionality 

that PyTorch offers. Appendix B also applies PyTorch to the models in Chapter 

7

, which 


are done in Keras.

If you would like to learn more about PyTorch after visiting Appendix B, check out 

the official PyTorch documentation.

 Summary

In recent years, deep learning has revolutionized an incredible variety of fields. Thanks 

to deep learning, we now have self-driving cars, models that have beaten professionals in 

detecting certain cancers, instant translation between languages, etc. It is of no surprise, 

then, that deep learning has also contributed heavily to the field of anomaly detection.

In this chapter, we discussed what deep learning is and what an artificial neural 

network is. You explored two popular frameworks, Keras and PyTorch, by applying them 

to the task of image classification with the MNIST data set.

In the upcoming chapters, we will take a look at the applications to anomaly 

detection of the following types of deep learning models: 




Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   89   90   91   92   93   94   95   96   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish