Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet96/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   92   93   94   95   96   97   98   99   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

 Simple  Autoencoders

Of course, we will focus on the anomaly detection piece in this chapter. Now, an 

autoencoder neural network is actually a pair of two connected sub-networks, an 

encoder and a decoder. An encoder network takes in an input and converts it into a 

smaller, dense representation, also known as a latent representation of the input, which 

the decoder network can then use to convert it back to the original input as much as 

possible. Figure 

4-2


 shows an example of an autoencoder with encoder and decoder 

sub-networks.



Figure 4-2.  A depiction of an autoencoder

Autoencoders use data compression logic where the compression and 

decompression functions implemented by the neural networks are lossy and are mostly 

unsupervised without much intervention. Figure 

4-3

 shows an expanded view of an 



autoencoder.

Chapter 4   autoenCoders




126

The entire network is usually trained as a whole. The loss function is usually either 

the mean-squared error or cross-entropy between the output and the input, known as 

the reconstruction loss, which penalizes the network for creating outputs different from 

the input. Since the encoding (which is simply the output of the hidden layer in  

the middle) has far less units than the input, the encoder must choose to discard 

information. The encoder learns to preserve as much of the relevant information as 

possible in the limited encoding and intelligently discards the irrelevant parts. The 

decoder learns to take the encoding and properly reconstruct it back into the input. If 

you are processing images, then the output is an image. If the input is an audio file, the 

output is an audio file. If the input is some feature engineered dataset, the output will be 

a dataset too. We will use a credit card transaction sample to illustrate autoencoders in 

this chapter.

Figure 4-3.  Expanded view of an autoencoder

Chapter 4   autoenCoders




127

Why do we even bother learning the presentation of the original input only to 

reconstruct the output as well as possible? The answer is that when we have input with 

many features, generating a compressed representation via the hidden layers of the 

neural network could help in compressing the input of the training sample. So when the 

neural network goes through all the training data and fine tunes the weights of all the 

hidden layer nodes, what will happen is that the weights will truly represent the kind of 

input that we typically see. As a result of this, if we try to input some other type of data, 

such as having data with some noise, the autoencoder network will be able to detect the 

noise and remove at least some portion of the noise when generating the output. This is 

truly fantastic because now we can potentially remove noise from, for example, images 

of cats and dogs. Another example is when security monitoring cameras capture hazy 

unclear pictures, maybe in the dark or during adverse weather, causing noisy images.

The logic behind the denoising autoencoder that if we have trained our encoder 

on good, normal images and the noise when it comes as part of the input is not really a 

salient characteristic, it is possible to detect and remove such noise.

Figure 

4-4


 shows the basic code to import all necessary packages in a Jupyter 

notebook. Note the versions of the various packages.

Chapter 4   autoenCoders



128

Figure 


4-5

 shows the code to visualize the results via a confusion matrix, a chart for 

the anomalies and a chart for the errors (the difference between predicted and truth) 

while training. It shows the Visualization helper class.



Figure 4-4.  Importing packages in a Jupyter notebook

Chapter 4   autoenCoders




129

You will use the example of credit card data to detect whether a transaction is 

normal/expected or abnormal/anomaly. Figure 

4-6


 shows the data being loaded into a 

Pandas dataframe.



Figure 4-5.  Visualization helpers

Chapter 4   autoenCoders




130

You will collect 20k normal and 400 abnormal records. You can pick different ratios 

to try, but in general more normal data examples are better because you want to teach 

your autoencoder what normal data looks like. Too much abnormal data in training 

will train the autoencoder to learn that the anomalies are actually normal, which goes 

against your goal. Figure 

4-7

 shows sampling the dataframe and choosing the majority of 



normal data.


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   92   93   94   95   96   97   98   99   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish