Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet99/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   95   96   97   98   99   100   101   102   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Figure 4-15.  Plotting of mae shown in TensorBoard

Figure 4-16.  Plotting of loss shown in TensorBoard

Chapter 4   autoenCoders




136

Figure 


4-17

 shows the plotting of the accuracy of validation during the training 

process through the epochs of training.

Now that the training process is complete, let’s evaluate the model for loss and 

accuracy. Figure 

4-19


 shows that the accuracy is 0.81, which is pretty good. It also shows 

the code to evaluate the model.



Figure 4-17.  Plotting of validation accuracy shown in TensorBoard

Figure 4-18.  Plotting of validation loss shown in TensorBoard

Figure 


4-18

 shows the plotting of the loss of validation during the training process 

through the epochs of training.

Chapter 4   autoenCoders




137

The next step is to calculate the errors, and detect and also plot the anomalies and 

errors. Choose a threshold of 10. Figure 

4-20


 shows the code to measure anomalies 

based on that threshold.




Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   95   96   97   98   99   100   101   102   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish