Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet107/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   103   104   105   106   107   108   109   110   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Figure 4-38.  Plotting of accuracy shown in TensorBoard

Figure 4-39.  Plotting of loss shown in TensorBoard

Chapter 4   autoenCoders




152

Figure 


4-40

 shows the plotting of the accuracy of validation during the training 

process through the epochs of training.

Figure 4-40.  Plotting of validation accuracy shown in TensorBoard

Figure 4-41.  Plotting of validation loss shown in TensorBoard

Figure 


4-41

 shows the plotting of the loss of validation during the training process 

through the epochs of training.

Chapter 4   autoenCoders




153

 Denoising  Autoencoders

You can force the autoencoder to learn useful features by adding random noise to its 

inputs and making it recover the original noise-free data. This way the autoencoder 

can’t simply copy the input to its output because the input also contains random noise. 

The autoencoder will remove noise and produce the underlying meaningful data. 

This is called a denoising autoencoder. Figure 

4-42

 shows a depiction of a denoising 



autoencoder.

Figure 4-42.  Depiction of a denoising autoencoder

Other example is a security monitoring camera capturing some kind of hazy unclear 

picture, maybe in the dark or during adverse weather, causing a noisy image.

The logic behind the denoising autoencoder is that if you have trained your encoder 

on good normal images, and the noise, when it comes as part of the input, is not really a 

salient characteristic, it is possible to detect and remove such noise.

Figure 

4-43


 shows the basic code to import all necessary packages. Also note the 

versions of the various packages.

Chapter 4   autoenCoders



154

You will use the mnist images data set for this purpose. Mnist contains images for the 

digits 0 to 9 and is used for many different use cases. Figure 

4-44


 shows the code to load 

MNIST images.




Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   103   104   105   106   107   108   109   110   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish