Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet109/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   105   106   107   108   109   110   111   112   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

Figure 4-48.  Code to compile the model

Figure 4-49.  Code to start training the model

Chapter 4   autoenCoders




158

Now that the training process is complete, let’s evaluate the model for loss and 

accuracy. Figure 

4-50


 shows that the accuracy is 0.81, which is pretty good. It also shows 

the code to evaluate the model.

The next step is to use the model to generate the output images for the testing subset. 

This will show you how well the reconstruction phase is going on. Figure 

4-51

 shows the 



code to display denoised images.

Figure 4-50.  Code to evaluate the model

Figure 4-51.  Code to display denoised images

Chapter 4   autoenCoders




159

You can also see how the encoder phase is working by displaying the test subset 

images in this phase. Figure 

4-52


 show the code to display encoded images.

Figure 4-52.  Code to display encoded images

Figure 


4-53

 shows the graph of the model as visualized by TensorBoard.

Chapter 4   autoenCoders



160

Figure 


4-54

 shows the plotting of the accuracy during the training process through 

the epochs of training.

Figure 4-53.  Model graph shown in TensorBoard

Chapter 4   autoenCoders




161

Figure 


4-55

 shows the plotting of the loss during the training process through the 

epochs of training.

Figure 4-54.  Plotting of accuracy shown in TensorBoard

Figure 4-55.  Plotting of loss shown in TensorBoard

Chapter 4   autoenCoders




162

Figure 


4-56

 shows the plotting of the accuracy of validation during the training 

process through the epochs of training.

Figure 4-56.  Plotting of validation accuracy shown in TensorBoard

Figure 


4-57

 shows the plotting of the loss of validation during the training process 

through the epochs of training.

Figure 4-57.  Plotting of validation loss shown in TensorBoard

Chapter 4   autoenCoders




163


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   105   106   107   108   109   110   111   112   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish