Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet111/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   107   108   109   110   111   112   113   114   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

even if they are 

not encodings of actual images.

In many real-world use cases, we have a whole bunch of data that we’re looking 

at it (it could be images, it could be audio or text; well, it could be anything) but the 

underlying data that needs to be processed might be lower in dimensions than the 

actual data, so lot of the machine learning models involve some sort of dimensionality 

reduction. One very popular technique is singular value decomposition or principal 

component analysis. Similarly, in the deep learning space, variational autoencoders do 

the task of reducing the dimensions.

Before we dive into the mechanics of variational autoencoders, let’s just recap 

the normal autoencoders that you saw in this chapter. Autoencoders basically use an 

encoder and decoder layer at a minimum to reduce the input data features into a latent 

representation by the encoder layer. The decoder expands the latent representation 

to generate the output with the goal of training the model well enough to reproduce 

the input as the output. Any discrepancy between the input and output could signify 

some sort of abnormal behavior or deviation from what is normal, otherwise known as 

anomaly detection. In a way, the output gets compressed into a smaller representation 

but has less dimension than the input, and this is what we call the bottleneck. From the 

bottleneck, we try to reconstruct the input.

Now that you have the basic concept of the normal autoencoders, let’s look at the 

variational autoencoders. In variational autoencoders, instead of mapping the input to a 

fixed vector, we map the input to a distribution so the big difference is that the bottleneck 

vector seen in the normal order in quarters is replaced with the mean vector and a 

standard deviation vector by looking at the distributions and then taking the sampled 

latent vector as the actual bottleneck. Clearly this is very different from the normal 

autoencoder where the input directly yields a latent vector.

Chapter 4   autoenCoders




164

First, an encoder network turns the input sample x into two parameters in a latent 

space, which you can call z_mean and z_log_sigma. Then, you randomly sample similar 

points z from the latent normal distribution that is assumed to generate the data,  

via z = z_mean + exp(z_log_sigma) * epsilon, where epsilon is a random normal 

tensor. Finally, a decoder network maps these latent space points back to the original 

input data. Figure 

4-58


 depicts the variational encoder neural network.


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   107   108   109   110   111   112   113   114   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish