Beginning Anomaly Detection Using


UXH  WUDQVIRUP WUDQVIRUPV7R7HQVRU  GRZQORDG  7UXH



Download 26,57 Mb.
Pdf ko'rish
bet89/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   85   86   87   88   89   90   91   92   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

7UXH



WUDQVIRUP WUDQVIRUPV7R7HQVRU 



GRZQORDG 

7UXH

WHVWBGDWDVHW WRUFKYLVLRQGDWDVHWV01,67 URRW GDWD 

WUDLQ 

)DOVH



WUDQVIRUP WUDQVIRUPV7R7HQVRU



'DWDORDGHU

WUDLQBORDGHU WRUFKXWLOVGDWD'DWD/RDGHU GDWDVHW WUDLQBGDWDVHW

EDWFKBVL]H EDWFKBVL]H

VKXIIOH 


7UXH

WHVWBORDGHU WRUFKXWLOVGDWD'DWD/RDGHU GDWDVHW WHVWBGDWDVHW

EDWFKBVL]H EDWFKBVL]H

VKXIIOH 


)DOVH

Figure 3-56.  Using DataLoaders, a feature of PyTorch, to get the training and 

testing data

Chapter 3   IntroduCtIon to deep LearnIng




114

The procedure for loading the MNIST data might be a bit different in PyTorch, using 

data loaders instead of data frames, but you can still use data frames, arrays, and so on 

in PyTorch after converting them to tensors. The procedure is usually to convert the data 

frame to a numpy array and then to a PyTorch tensor.

Let’s move on to creating your model (Figure 

3-57

).


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   85   86   87   88   89   90   91   92   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish