Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet74/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   70   71   72   73   74   75   76   77   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

hyperparameters, 

parameters that are set before the training process.

Let’s create your training and testing data sets. One thing to note is that you can use 

data frames, arrays, matrices, etc. in Keras to serve as your data sets. Run the code in 

Figure 

3-16


.

You can use matplotlib to see what one of these images looks like. Run the code in 

Figure 

3-17


 and see the results in Figure 

3-18


.

EDWFKBVL]H 

QBFODVVHV 

QBHSRFKV 

LPBURZLPBFRO 

Figure 3-15.  Variables to use later

[BWUDLQ\BWUDLQ  [BWHVW\BWHVW  PQLVWORDGBGDWD



Figure 3-16.  Define the training and testing data sets

Chapter 3   IntroduCtIon to deep LearnIng




87

You can enter anywhere from 0 to 59,999 to visualize a sample in x_train.

Just looking at 10 examples of the digit 1, you can see there is plenty of variation in 

the data set (see Figure 

3-19

 and Figure 



3-20

).


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   70   71   72   73   74   75   76   77   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish