Oʻzbekiston respublikasi оliy va oʻrta maxsus


Fuzzy Control System for Detecting Subjectivity



Download 2,07 Mb.
bet149/158
Sana24.02.2023
Hajmi2,07 Mb.
#914238
1   ...   145   146   147   148   149   150   151   152   ...   158
Bog'liq
llm saechasmalari PdfToWord

Fuzzy Control System for Detecting Subjectivity. In the first step, we estimate the membership function using a statistical technique rather than expert knowledge. Then, using the back-propagation technique, we perform fuzzy operations and alter parameters. We now present our algorithm ( 𝑟 = 1, 2, … , 𝑅).


    1. 𝑖,𝑗
      Formulas (1)-(2) are used to compute the membership degree of words ( μ𝑟 ) in the 𝑟 -𝑡ℎ sen-

tence.



1 https://huggingface.co/Sanatbek/uzbek-restaurant-domain-reviews/tree/main

term.


    1. Maximum membership level is determined with regard to courses for each term of the 𝑟 − 𝑡ℎ

𝜇̅𝑟 = 𝜇𝑟 ,



𝑖,𝑗 𝑖,𝑗

𝑖,𝑣
𝑗 = 𝑎𝑟𝑔 max1≤𝑣≤𝑁 𝜇𝑟 , (3)
𝑖 = 1, … , 𝑀.

    1. Maxima means are computed for all classes:

𝑘∈𝑍 𝜇̅𝑟


𝜇̅ =
𝑟
𝑖,𝑗
𝑇𝑟
𝑖,𝑗,

𝑍𝑟 = {𝑖: 𝜇̅𝑟 = max1≤𝑣≤𝑁 𝜇̅𝑟 }, (4)
𝑗 𝑖,𝑗 𝑖,𝑗
𝑗 = 1, … , 𝑁.
For the defuzzification procedure, we use the Center of Gravity Defuzzification (CoGD) approach. A fuzzy control model is used to train objective and subjective statements chosen according to classes. This is how the objective function is defined [2]:
1 𝑁 ̅𝜇̅̅̅𝑟̅𝑦 2

𝐸(𝑦) =
𝑁 ( 𝑗=1 𝑦 𝑗 𝑑 )

→ min
𝑁,
(5)


𝑦


2 𝑗=1
𝑁
𝑗=1
̅𝜇̅̅̅𝑟̅
𝑦∈𝑅

𝑦 = (𝑦1, 𝑦2, , … , 𝑦𝑁) desired output.This function’s partial derivatives are computed using the following formula:


𝑗
𝑅
𝜕𝐸(𝑦)
= ∑

𝜇̅𝑟
𝑁



𝑦


( 𝑗=1
𝑚̅𝑦𝑗

𝑦
− 𝑑

) , 𝑡 = 1,2, … , 𝑁.



𝜕𝑦𝑡

𝑟=1
𝑁




𝑗=1
𝜇̅̅̅𝑟̅
𝑁
𝑗=1
̅𝜇̅̅𝑟̅ 𝑟

Using the optimum values of 𝑦, the conjugate gradient approach minimizes function (5). The index of the classes gained in the result is shown by rounding 𝑦̅:
𝑁 𝜇̅̅̅̅𝑟̅𝑦
𝑦̅ = 𝑗=1 𝑦 𝑗. (6)


𝑦


𝑁
𝑗=1
Acceptance technique (𝑠):
̅𝜇̅̅̅𝑟̅
𝑠 =


𝑖𝑠𝜖𝐼, 𝑖𝑓 𝑦̅𝜖(𝑖𝑠 − ∆1, 𝑖𝑠 + ∆1,)
{ 𝑟𝑒𝑓𝑒𝑐𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝑖𝑠 is the proper class index and 𝐼 = 1,2, . . . , 𝑁 Here, ∆1∈ [0; 0.5] is the major quantity in- fluencing dependability of system? It is simple to determine which feature vector produces the greatest results for 𝐹𝐶𝑆. Table 1 displays the average accuracy of 𝐹𝐶𝑆 based on (1)-(2) features in the unrestricted
scenario over tenfold cross validation. It should be noted that these findings are dependent on the classification technique and may change for various classifiers.

Features

Accuracy (%)

𝑇𝐹

89.87

𝑇𝐹 ∙ 𝐼𝐶𝐹

91.3

Table 1: 𝐹𝐶𝑆 results based on 𝑇𝐹 and 𝑇𝐹 ∙ 𝐼𝐶𝐹 characteristics.
We also examined FCS based on Delta TFIDF characteristics [3]. As the DeltaIDF weighting coef- ficients for all classes are identical, the use of DeltaIDF weighting has no effect on the FCS's precision. As seen in Table 1., the accuracy of the approach rises when pruned ICF weighting is used. Table 2 dis- plays the results of subjectivity detection by FCS with various ∆1values based on 𝑇𝐹 ∙ 𝐼𝐶𝐹. It can be ob- served that the rejection rate for ∆1= 0.5 is 0.01 percent. During testing, 0.01% of the sentences include these phrases, which after ICF pruning becomes 0 and the system rejects these sentences.




Correct (%)

Rejection (%)

Error(%)

1= 0.3

76.41

20.86

2.73

1= 0.4

85.11

10.14

4.75

1= 0.5

91.3

0.01

8.69

Table 2. Average results of 10 folds cross validation accuracy of FCS using 𝑇𝐹 ∙ 𝐼𝐶𝐹 feature with varying alpha values.






Figure 1. The structure of MANN in ANFIS.


Detecting subjectivity using an Adaptive Neuro Fuz [4]zy Inference System. Fig. 1 depicts the basic framework of the Adaptive Neuro Fuzzy Inference System. As a result of linguistic assertions, the fuzzy interface block offers a vector input to a Multilayer Artificial Neural Network (MANN) [4]. In the first step, we employed statistical estimate of term membership degree using (2) rather than linguistic claims. We then used fuzzy operations (3) and (4).
MANN was applied to the fuzzyfication operation's output. The neural network input vector is derived from the fuzzyfication operation output vector (fig. 2). The outputs of MANN are used as indices of sentence-appropriate classifications. The backpropagation method is used to train MANN.
We provide two stipulations for the acceptance decision:
1. 𝑦̅𝑘 ≥ ∆2,
2. 𝑦̅𝑘 − 𝑦̃𝑝 ≥ ∆3,





Download 2,07 Mb.

Do'stlaringiz bilan baham:
1   ...   145   146   147   148   149   150   151   152   ...   158




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish