Oʻzbekiston respublikasi оliy va oʻrta maxsus



Download 2,07 Mb.
bet147/158
Sana24.02.2023
Hajmi2,07 Mb.
#914238
1   ...   143   144   145   146   147   148   149   150   ...   158
Bog'liq
llm saechasmalari PdfToWord

Ключевые слова: выявление субъективности, cентимент анализ, алгоритм нечеткой сис- темы управления, узбекский язык, распознавание образов.
Key words: subjectivity detection, sentiment analysis, fuzzy control system algorithm, Uzbek lan- guage, pattern recognition.
Introduction. In recent years, there has been a surge in interest in identifying and extracting sub- jective information from Web sites, such as opinions. Opinions are often subjective statements represen- ting the opinions, evaluations, or emotions of persons. The goal of subjectivity detection is to ascertain
whether a given text expresses opinions (subjective) or offers facts (objective) [1, pp. 1153-1161]. Tech- niques for automated subjectivity analysis have been implemented in a variety of text processing and na- tural language applications. In a number of natural language processing applications, subjectivity detec- tion is employed as a first filtering step to give more relevant data. Our research aims to build learning techniques for classifiers that can differentiate between subjective and objective texts. In this paper, we classify subjectivity at the sentence level using language-independent feature weighting. As a test issue, we used the “Uzbek cuisine” restaurant domain review subjectivity dataset that is stored to huggingface1.
Main part. Two different supervised machine learning approaches: a Fuzzy Control System and Adaptive Neuro-Fuzzy Inference System and applied to sentence-level subjectivity detection in a restau- rant domain review. The presence or occurrence statistics within the corpus are used by the majority of language independent feature extraction techniques. We present one such technique that is simple to use, computationally efficient, and does not need any extra human annotation or lexical understanding. We use a subjectivity dataset, which contains 5000 subjective and objective processed phrases from restaurant domain reviews. Because our target lacks lexical expertise, we consider each word to be a code word. We do not mix verbs in various tenses, such as present and past (“qaror qilish” vs. “qaroq qilishdi”), nor nouns as single or plural in our algorithm (“gul” vs “gullar”). Instead, we regard them to be the various code terms.

Download 2,07 Mb.

Do'stlaringiz bilan baham:
1   ...   143   144   145   146   147   148   149   150   ...   158




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish