O'rta maxsus ta'lim



Download 3,93 Mb.
bet10/18
Sana20.06.2022
Hajmi3,93 Mb.
#680358
1   ...   6   7   8   9   10   11   12   13   ...   18
Bog'liq
Differensial-tenglamalar-kursidan-misol-va-masalar-toplamlari

y = Cx2 parabolalaroilasiningortogonaltrayektoriyalarini toping.

  • r^ a( 14cosip) kardioidalar oilasining ortogonal trayektoriyalarini toping.

    5 .2 \.y^Cx to’g ’ri chiziqlar oilasining izogonal trayektoriyalarini toping

      1. x 2 = 2a(y - W 3 ) egri chiziqlarni 60° burchak ostida kesuvchi izogonal trayektoriyalar oilasini toping.

      2. у 2 = 4Cx parabolalar oilasining izogonal trayektoriyalarini toping. Kesishish burchagi 45° ga teng.

      3. r2=a2cos2
        lemniskatalar oilasining ortogonal trayektoriyalarini toping.



    I - bohga doir nmol vm magatahirnmg javobfain ,-1

    l . I . arctgx + arctgy = С . 1.2. I + y 2= Cx2 .1 .3 . Vl + дг + -J] + у 1 = С .

    1.4. - 1 I
    y - 2 2(jc + 1)
    -С. 1.5. y = s in ( C In ( l + .x2)); y = l . 1.6. y = f a x - 3 x 2 +C

    1 . 7 . 2 y - 2 a r c rg y - 3 1 n } x - l | + ln |;c + l |= C . 1.8. y - x ( \ n \ y \ + \) =Cycosx, y= 0 . l^ ./g ^ jt + s i n ^ = C . l.lO .x + y ^ l n ^ j c + lXy + l ) ) , . ) ^ - 1. l . l l . x - y + ln\xy\ =C , у=0АЛ2. ( x - l ) 2+ y 2 = C2. 1.13.cosy = C e o s jt.1.14.(1+ e >)eI =C .


    1.15. y = Ce^ . 1.16. y = С(дг2—4 ) . 1.17. y = C co sx . 1.18. y =C(x +J x 2 +a2).
    1.19. In x = С , 0. 1.20. InJjcyJ +xy~ C . 1.21. x - 0 . 1.22. 2ey = e* + 1.
    ХУ

    1.23. х 2+у 2 = 2


    /
    1+ In X

    . 1.24. у = еГ' г. 1.25. y = 2 sin 2x — .



    \ У ) 2
    1.26. ~ J y - x l n x - x + 1. 1.27. x 2= 2 + 2у 2. 1.28. sinx. 1.29. 5 min 56s.
    1.30. - j. 1.31.y=-2e3\ 1.32. y =~ . 1.33. 60 min.
    40 In2,5 x
    2 x
    2 . 1. tg— = InlCxl. 1.35.Jt = Ce>*' .2 .2 . y 2 + 3 x y - 2 x 2 = C .
    X
    2.3. jc= C ( ln y - l n x - 1) 2.4. x = C‘$ ( y / x ) - 2.5. y =S x ~-2l ~ ~ -
    J l +tg H y/x) ' 2(x - 1)
    2 .6 . Зу + x - ln(x - 2 y) = С . 2 .7 .y 1-3xy+2x2- С. 2.8. x 2-y2 = C * .
    у 2 _J.
    2.9. In Cx =- е ~ж. 2.10. y = — — . 2.11. y 2 = x 2(l + C x). 2.12. y = xe г“
    C +x
    2 .13 . y =x e 2 . 2.14. sin— + ln|x| = 0 . 2.15. y = - x . 2.16. J x 2 +y 2 =ex
    x
    2Л7. y = 4e~**~ . 2.18. y 1 = 2C ^x + ^-j. 2.19. y = l ™ . 2.20. y = ^ -

    3.1. y = - i + O r ' 2 . 3.2. y = ( x 2+ C ) e ' \ 3.3. y = (x3 + C ) ln x .


    3.4. x + —y 1+ —y + —= Ce2y. 3.5. y = ( 6 + C ) s in x . 3.6. y = ?-


    2 2 4 V:
    3.7. у 2= x ( C - ln x ) . 3.8. y - x V = C . 3.9. x 2+ / = Cy2. 3.10. y = C - e smx
    3.11. >, = 4 x + ^ g j tl £ !) + C’- 3.12. y = 3.13. y = - 1
    л / ^ Т х 1 ' ' 2x 2 xln C x
    3.14. y = lnx + — .3 .15 . у = -^—!-+ - T ^ - 3.16. у = ± ; --.
    X 3 7 2 ^ ' 4 ^ 7
    2
    3.17. y = x - x 2. 3.18. 3.19. у = - ^ — . 3.20. y = l . 3.21. y 3 = x - 2 e ' *.
    C O S X cos*
    3.22. y = — j=L =— . 3.23. v = (v0+ 6> +*(a
    =~ , Ь=Ц ^
    V l- x 2 + l 2w *,
    3.24. / +Rsinrot-соI. cosa>t), (zanjirdagi kuchlanish L— +R!


    qonuniyat bilan o ’zgaradi). 3.25. v = — f / - —+ —e *"’ 1
    к \ к к j
    3.26. у = 2( lT a 2) + j - (tenglamasi | j y - x 2y j = o! ). 3.27. y = 2 x - j c l n | x |

    4 .1 .(x+ 7 )(jc-.y)V =C . 4.2. six2- у 2 - x = C . 4.3. (| + е'^ = С .
    4.4. x J ry ’-x2-xy ty 2~C. 4.5. x3y->x2-y=Cxy. 4.6. xe* \ ye +3x-2_y = C 4.7. x 2 + ^ + e " = С . 4.8. x3 + 3d2/ + d4 = С . 4.9. xe" - у 2 = С .
    4.10. x 2+ у 2- 2arctg— . 4.11. x V - y =C . 4.12. x 2cos2> + .y = C .
    x
    4.13. — C| —^ + x = C . 4.14. 6x 2 -t- Sxy +y 2 - 9 x - 4 y = C .
    4.15.-x-2-y2 + yx =C; fi =y. 4.16. jc——v = 1r.
    2 л *
    4.17. y 3+ x 3( ln x - l) = Cx2; p = 1r 4.18. x 2 ---7 Зх_у = C; p = —1 .
    * > >
    5.1. / = 2x + C ;y = - ix 2+C '. 5.2. y = C;y =±- Jx+C .


    5.3. >=£ ; j , =£ . 5.4. J, = ±£- +C; j/ =( V
    лг jc 2
    5.5. у = 0 ; Г =Оy ,=+p12eУpЧ С . 5-6.1[y = p *+=cotosp' ++psisnm? p +C .


    S 3 . , . X I ХШ* * С . S . » . , . C ^ a ^ C . y . - U * )
    y = psinp +cosp 4

    5.9. ^ = Cx + V ^ , x 2 + / = l 5.10 \* =W - P ) +C e ' J u ^


    Iy = 2(p2-] ) 2+Ce"(l + p ) + p 2
    x = p - l n p + C , ,
    5.11. •{ ( p - 1 )2 . 5.12. y = Cx +— , y =- x 2. 5.13. y = 4e2, y = -4 e 2.
    y =xpz - p 4
    5.14. У =~ - 5.15. (y-x-2 a)2=&ax. 5.16. у 2=Cx~m + ~ ~ . 5 .17 . xy^a2.
    2 2
    5.18. S=at2, a-o’zgarmas son. 5.19. ^ - + -^- = C 2. 5.20. p =Csm2^ .
    _L -v
    5.21. x 2 + у 2 = Се* , k = tga . 5.22. y 2 - C(x - y 4 3 ).
    6 2y - x
    52Ъ. y 1 - x y + 2 x 2 =Ce^ . 5 . 2 4 . /-2 = C s i n 2 < o .


    1 BOB. YUQORI TARTIBLI DIFFERENSIAL TENGLAMALAR.

    !-§• Tartibini paanytirish mumkin bo4g«n diffcrenstol tenglam »br. F '




    n-tartibli differensial tenglamani simvolik ravishda


    F (x,y,y ..... У"'1’, / V O (1)

    ko’rinishda yoki bu tenglamani n-tartibli hosilaga nisbatan yechib bo’lsa,




    у <п)=Лх,у,у..... /" '> ) (2)


    ko ’rihishda yozish mumkin.
    и-tartibli differensial tenglamaning umumiy yechimi x ga va n-ta ixtiyoriy o ’zgarmaslarga bog’liq bo’ladi: у = g ( x , C l,C 2,...,C „).
    Shu sababli umumiy yechimdan xususiy yechimni ajratib olish uchun ixtiyoriy o ’zgarmaslami aniqlashga imkon beradigan ba’zi qo’shimcha shartlar ham berilgan bo’lishi kerak. Bu shartlami izlanayotgan funksiyaning va uning (n-1 (-tartibgacha (y ham kiradi) barcha hosilalaming biror nuqtadagi qiymatlarini, ya’ni x=xo da


    У(х0) 0, y'(xu) = y i,...,y t ’-l)(xa) = y n ] (3)

    berish bilan hosil qilish mumkin. (3) sistema boshlang'ich shartlar sistemasi deyiladi. Berilgan (2) differensial tenglamaning (3) boshlang’ich shartlar sistemasini qanoatlantiruchi xususiy yechimini topish masalasi Koshi masalasi deyiladi.


    Yuqori tartibli differensial tenglamalami integrallash masalasi birinchi tartibli tenglamani integrallash masalasidan ancha qiyin bo’lib, har doim ham birinchi tartibli tenglamani integrallashga keltiraverilmaydi. Shunday bo’lsada chiziqli tenglamalardan tashqari barcha turdagi yuqori tartibli tenglamalar uchun integrallashning asosiy usuli tartibini pasaytirish, ya’ni berilgan tenglamani unda o ’zgaruvchilami almashtirish orqali tartibi pastroq tenglamaga keltirish bo’lib hisoblanadi. Biroq tenglamaning tartibini pasaytirishga har doim ham erishish mumkin emas. Biz bu yerda tenglama tartibini pasaytirishga imkon beradigan n-tartibli tengtamalarning eng sodda turlari bilan tanishamiz.

    1. Ushbu


    Download 3,93 Mb.

    Do'stlaringiz bilan baham:
  • 1   ...   6   7   8   9   10   11   12   13   ...   18




    Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
    ma'muriyatiga murojaat qiling

    kiriting | ro'yxatdan o'tish
        Bosh sahifa
    юртда тантана
    Боғда битган
    Бугун юртда
    Эшитганлар жилманглар
    Эшитмадим деманглар
    битган бодомлар
    Yangiariq tumani
    qitish marakazi
    Raqamli texnologiyalar
    ilishida muhokamadan
    tasdiqqa tavsiya
    tavsiya etilgan
    iqtisodiyot kafedrasi
    steiermarkischen landesregierung
    asarlaringizni yuboring
    o'zingizning asarlaringizni
    Iltimos faqat
    faqat o'zingizning
    steierm rkischen
    landesregierung fachabteilung
    rkischen landesregierung
    hamshira loyihasi
    loyihasi mavsum
    faolyatining oqibatlari
    asosiy adabiyotlar
    fakulteti ahborot
    ahborot havfsizligi
    havfsizligi kafedrasi
    fanidan bo’yicha
    fakulteti iqtisodiyot
    boshqaruv fakulteti
    chiqarishda boshqaruv
    ishlab chiqarishda
    iqtisodiyot fakultet
    multiservis tarmoqlari
    fanidan asosiy
    Uzbek fanidan
    mavzulari potok
    asosidagi multiservis
    'aliyyil a'ziym
    billahil 'aliyyil
    illaa billahil
    quvvata illaa
    falah' deganida
    Kompyuter savodxonligi
    bo’yicha mustaqil
    'alal falah'
    Hayya 'alal
    'alas soloh
    Hayya 'alas
    mavsum boyicha


    yuklab olish