O’quv predmetining nomi: Algebra O’quv mаshg’ulоtidа tа’lim tехnоlоgiyasi mоdеli


Egri chiziq urinmasining burchak koeffitsientini topish masalasi



Download 266,86 Kb.
bet4/6
Sana06.04.2022
Hajmi266,86 Kb.
#531662
1   2   3   4   5   6
Bog'liq
3-mavzu. 2-kurs algebra

Egri chiziq urinmasining burchak koeffitsientini topish masalasi

E ndi G egri chiziq biror oraliqda aniqlangan uzluksiz y=f(x) funksiyaning grafigi bo‘lgan holda urinmaning burchak koeffitsientini topaylik. Qaralayotgan f(x) funksiya grafigini ifodolovchi G chiziqqa tegishli M0 nuqtaning abssissasi x0, ordinatasi f(x0) va shu nuqtada urinma mavjud deb faraz qilaylik.


G chiziqda M0 nuqtadan farqli N(x0+x, f(x0+x)) nuqtani olib, M0N kesuvchi o‘tkazamiz. Uning Ox o‘qi musbat yo‘nalishi bilan tashkil etgan burchagini  bilan belgilaymiz (6-chizma). Ravshanki,  burchak x ga bog‘liq bo‘ladi: =(x) va tg= o‘rinli
6-chizma Urinmaning absisa o‘qining musbat yo‘nalishi bilan hosil qilgan burchagini  bilan belgilaymiz. Agar /2 bo‘lsa, u holda tg funksiyaning uzluksizligiga ko‘ra kurinma=tg = , va N nuqtaning M0 nuqtaga intilishi x yning 0 ga intilishiga teng kuchli ekanligini e’tiborga olsak, kurinma = tenglikka ega bo‘lamiz.
Shunday qilib, y=f(x) funksiyaning abssissasi x0 bo‘lgan nuqtasida novertikal urinma o‘tkazish mumkin bo‘lishi uchun shu nuqtada limitning mavjud bo‘lishi zarur va yyetarli, limit esa urinmaning burchak koeffitsientiga teng bo‘lar ekan.


Hosilaning geometrik va fizik ma’nolari. Urinma va normal tenglamalari. Hosilaning geometrik ma’nosi
Yuqorida biz, agar y=f(x) funksiya grafigining M0(x0;f(x0)) nuqtasida urinma o‘tkazish mumkin bo‘lsa, u holda urinmaning burchak koeffitsienti kurinma= ekanligini ko‘rsatgan edik. Bundan hosilaning geometrik ma’nosi kelib chiqadi:
y =f(x) funksiya grafigiga abssissasi x=x0 bo‘lgan nuqtasida o‘tkazilgan urinmaning burchak koeffitsienti hosilaning shu nuqtadagi qiymatiga teng
7-chizma 8-chizma kurinma=f’(x0).
Faraz qilaylik y=f(x) funksiya x=x0 nuqtada uzluksiz va f’(x0)=+ bo‘lsin. U holda funksiya grafigi abssissasi x=x0 nuqtada vertikal urinmaga ega bo‘lib, unga nisbatan funksiya grafigi 6-chizmada ko‘rsatilgandek joylashadi.
Xuddi shu kabi f’(x0)=- bo‘lganda ham x=x0 nuqtada funksiya grafigi vertikal urinmaga ega bo‘ladi, funksiyaning grafigi urinmaga nisbatan 8–rasmda ko‘rsatilgandek joylashadi.
Agar f’(x0+0)=+ va f’(x0-0)=- bo‘lsa, u holda funksiya grafigining x=x0 nuqta atrofida 4-chizmada tasvirlangandek bo‘ladi. Xuddi shunga o‘xshash, f’(x0+0)=- va f’(x0-0)=+ bo‘lganda,
funksiya grafigi x=x0 nuqta atrofida 3–chizmadagidek ko‘rinishda bo‘ladi. Bunday hollarda (x0,f(x0)) nuqtada urinma mavjud, ammo hosila mavjud emas.
Agar x=x0 nuqtada chekli bir tomonli hosilalar mavjud, lekin f’(x0+0)f’(x0-0) bo‘lsa, u holda funksiya grafigi 5–chizmadagiga o‘xshash ko‘rinishga ega bo‘ladi. (x0,f(x0)) nuqta grafikning sinish nuqtasi bo‘ladi.

Download 266,86 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish