Образец типовой учебной программы от 23


моно - один эдра



Download 23,4 Mb.
bet12/124
Sana19.03.2022
Hajmi23,4 Mb.
#501151
1   ...   8   9   10   11   12   13   14   15   ...   124
Bog'liq
Базык \'Геология\'

моно

- один

эдра

- грань

ди (би)

- два

гония

- угол

три

- три

пинакс

- доска

тетра

- четыре

скалена

- разносторонний треугольник

пента

- пять

трапеца

- разносторонний четырехугольник

гекса

- шесть

син

- сходно

окта

- восемь







дека

- десять







додека

- двенадцать









Высшая категория
Необходимым условием отнесения кристаллов к кубической сингонии является присутствие четырех осей третьего порядка - 4 L3.
Элементарная ячейка кристаллов кубической сингонии имеет форму куба
Среди простых форм кристаллов этой сингонии выделяются основные и производные. Свое название они получают по числу и форме граней (таб. 2.5, приложения А-Б)

Таблица 2.5 – Простые формы кристаллов кубической сингонии





Основные формы

Производные формы

Кол-во граней

Форма грани

1

Тетраэдр




4

Равносторонний треугольник

2




Тригонтритетраэдр

12

Равнобедренный треугольник

3




Тетрагонтритетраэдр

12

Четырехугольник

4




Пентагонтритетраэдр

12

Несимметричный пятиугольник

5




Тригонгексатетраэдр (гексатетраэдр)

24

Разносторонний треугольник

6

Октаэдр




8

Равносторонний треугольник

7




Тригонтриоктаэдр

24

Равнобедренный треугольник

8




Тетрагонтриоктаэдр

24

Четырехугольник

9




Пентагонтриоктаэдр

24

Несимметричный пятиугольник

10




Тригонгексаоктаэдр (гексаоктаэдр)

48

Разносторонний треугольник

11

Гексаэдр (куб)




6

Квадрат

12




Тригонтетрагексаэдр (пирамидальный куб)

24

Равнобедренный треугольник

13

Ромбо-додекаэдр




12

Ромб с углами наклона 45 к двум координатным осям и параллельный третьей

14

Пентагон-додекаэдр




12

Симметричный пятиугольник с углами наклона 30 и 60 к двум координатным осям и параллельный третьей

15




Дидодекаэдр

24

Четырехугольник



Средняя категория
К средней категории относятся гексагональная, тетрагональная и тригональная сингонии (таб. 2.6, приложения А-Б).
Необходимым условием отнесения кристаллов к средней категории является наличие одной оси высшего порядка соответственно: L6, L4, L3

Таблица 2.6 – Простые формы кристаллов сингоний средней категории



Сингония


Характеристики

Гексагональная

Тетрагональная

Тригональная

Необходимые условия отнесения к сингонии

Наличие одной оси шестого порядка L6

Наличие одной оси четвертого порядка L4

Наличие одной оси третьего порядка L3

Форма элементарной ячейки

Шестигранная призма

Параллелепипед с квадратным сечением

Ромбоэдр

Простые формы
(рисунки простых форм представлены в приложении I - Б)

Гексагональная пирамида - 6 наклонных граней, сходящихся в одной вершине, через которую проходит L6. Сечение перпендикулярное ей - правильный шестиугольник.



Тетрагональная пирамида - 4 наклонных грани, сходящихся в одной вершине, через которую проходит L4. Сечение перпендикулярное ей - квадрат.

Тригональная пирамида - 3 наклонных грани, сходящихся в одной вершине, через которую проходит L3. Сечение перпендикулярное ей - равносторонний треугольник.




Дигексагональная пирамида - 12 наклонных граней, образующих гексагональную пирамиду, каждая грань которой разделена на две равные, симметрично расположенные грани. Сечение перпендикулярное L6 , имеет вид равностороннего 12-угольника с углами, равными через один.

Дитетрагональная пирамида - 8 наклонных граней, образующих тетрагональную пирамиду, каждая грань которой разделена на две равные, симметрично расположенные грани. Сечение перпендикулярное L4 , имеет вид равностороннего 8-угольника с углами, равными через один.

Дитригональная пирамида - 6 наклонных граней, образующих тригональную пирамиду, каждая грань которой разделена на две равные, симметрично расположенные грани. Сечение перпендикулярное L3 , имеет вид равностороннего 6-угольника с углами, равными через один.




Гексагональная бипирамида - 12 наклонных граней, имеющих форму равнобедренного треугольника и образующих две одинаковые пирамиды, сложенные основаниями.

Тетрагональная бипирамида - 8 наклонных граней, имеющих форму равнобедренного треугольника и образующих две одинаковые пирамиды, сложенные основаниями.

Тригональная бипирамида - 6 наклонных граней, образующих две одинаковые пирамиды, сложенные основаниями. Сечение перпендикулярное L3, имеет вид равностороннего треугольника.




Дигексагональная бипирамида - 24 наклонных грани, образующих две одинаковые дигексагональные пирамиды, сложенные основаниями.

Дитетрагональная бипирамида - 16 наклонных граней, образующих две одинаковые дитетрагональные пирамиды, сложенные основаниями.

Дитригональная бипирамида - 12 наклонных граней, образующих две одинаковые дитригональных пирамиды, сложенные основаниями.




Гексагональная призма - 6 вертикальных граней параллельных L6 и попарно параллельных друг другу, поперечное сечение имеет вид правильного шестиугольника.

Тетрагональная призма - 4 вертикальных грани, параллельных L4 и попарно параллельных друг другу, поперечное сечение имеет вид квадрата.

Тригональная призма - 3 вертикальных грани, параллельных L3, поперечное сечение имеет вид равностороннего треугольника.




Дигексагональная призма - 12 вертикальных граней, образующих гексагональную призму, каждая грань которой разделена на две равные, симметрично расположенные грани. Сечение перпендикулярное L6 , имеет вид равностороннего 12-угольника с углами, равными через один

Дитетрагональная призма - 8 вертикальных граней, образующих тетрагональную призму, каждая грань которой разделена на две равные, симметрично расположенные грани. Сечение перпендикулярное L4 , имеет вид равностороннего 8-угольника с углами, равными через один.

Дитригональная призма - 6 вертикальных граней, образующих тригональную призму, каждая грань которой разделена на две равные, симметрично расположенные грани. Сечение перпендикулярное L3, имеет вид равностороннего 6-угольника с углами, равными через один.




Гексагональный трапецоэдр - 12 наклонных граней, имеющих форму 4-угольника с двумя равными смежными сторонами. Эта форма похожа на бипирамиду, у которой нижняя часть относительно верхней расположена асимметрично. Не имеет плоскостей и центра симметрии.

Тетрагональный трапецоэдр - 8 наклонных граней, имеющих форму 4-угольника с двумя равными смежными сторонами. Эта форма похожа на бипирамиду, у которой нижняя часть относительно верхней расположена асимметрично. Эта простая форма не имеет плоскостей и центра симметрии.

Тригональный трапецоэдр - 6 наклонных граней, имеющих форму 4-угольника с двумя равными смежными сторонами. Эта форма похожа на бипирамиду, у которой нижняя часть расположена асимметрично верхней и поэтому не имеет плоскостей симметрии.




Пинакоид - 2 равных параллельных грани, имеющих любую форму. Встречается только в комбинации, например с призмой («основания» призмы).


Download 23,4 Mb.

Do'stlaringiz bilan baham:
1   ...   8   9   10   11   12   13   14   15   ...   124




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish