Normal korsatkichli taqsimotlar



Download 104,61 Kb.
bet1/2
Sana19.10.2022
Hajmi104,61 Kb.
#854002
  1   2
Bog'liq
Normal taqsimot


Normal korsatkichli taqsimotlar
Agar X uzluksiz tasodifiy miqdorning mumkin bo‘lgan barcha qiymatlari tegishli bo‘lgan oraliqda ehtimolliklarning taqsimot zichligi o‘zgarmas, ya’ni da bo‘lsa va bu oraliqdan tashqarida esa ( o‘zgarmas) bo‘lsa, X tasodifiy miqdor taqsimoti tekis deyiladi.

formula asosida taqsimot funksiyasini topish mumkin:

X uzluksiz tasodifiy miqdorning oraliqqa tegishli oraliqda tushish ehtimolligi ga teng.
Agar zichlik funksiyasi

(bu yerda — erkli parametrlar) ko‘rinishda berilgan bo‘lsa, X uzluksiz tasodifiy miqdorning taqsimoti normal deyiladi.
Normal taqsimlangan X uzluksiz tasodifiy miqdorning berilgan oraliqqa tushish ehtimolligi ushbu formula bo‘yicha hisoblanadi:
, bu yerda
Laplas funksiyasi.
CHetlanishning absolyut qiymati musbat sondan kichik bo‘lishi ehtimolligi

ga teng.
Agar zichlik funksiyasi

(bu yerda erkli parametr) ko‘rinishda berilgan bo‘lsa, uzluksiz tasodifiy miqdorning taqsimoti ko‘rsatkichli deyiladi:
formula asosida taqsimot funksiyasini topish mumkin:

uzluksiz tasodifiy miqdor ko‘rsatkichli taqsimotga ega bo‘lsa, berilgan oraliqqa tushish ehtimolligi uchun ushbu formula o‘rinli:

Agar T – biror elementning to‘xtovsiz ishlash davomiyligi, esa to‘xtab qolishlar intensivligi (tezligi)ni ifodalovchi uzluksiz tasodifiy miqdor bo‘lsa, u holda bu elementning to‘xtovsiz ishlash vaqti ni taqsimot funksiyasi bo‘lgan (u vaqt davomida elementning to‘xtab qolish ehtimolligini aniqlaydi) ko‘rsatkichli qonun bo‘yicha taqsimlangan tasodifiy miqdor deb hisoblash mumkin.
Ishonchlilik funksiyasi elementning vaqt ichida to‘xtovsiz ishlash ehtimolligini aniqlaydi:
.
Matematik kutilish va dispersiya:
1) tekis taqsimlangan uzluksiz tasodifiy miqdor uchun:

2) ko‘rsatkichli taqsimot uchun:

3) normal taqsimot uchun:

1-misol. Tekis taqsimlangan X tasodifiy miqdor zichlik funksiyasi bilan berilgan:

M(X) va D(X) ni toping.
Yechish:
demak, ;
demak, .
Shunday qilib,
2-misol. X tasodifiy miqdor normal taqsimlangan bo‘lib, matematik kutilishi a=10 ga teng. X tasodifiy miqdorning (10;20) oraliqqa tushish ehtimolligi 0.3ga teng bo‘lsa, uning (0,10) oraliqqa tushish ehtimolligini toping.
Yechish: Normal egri chiziq (Gauss egri chizig‘i) x=a=10 to‘g‘ri chiziqqa nisbatan simmetrik bo‘lgani uchun yuqoridan normal egri chiziq bilan, pastdan esa (0,10) hamda (10,20) oraliqlar bilan chegaralangan yuzlar bir – biriga teng. Bu yuzlar son jihatdan X tasodifiy miqdorning tegishli oraliqlarga tushish ehtimolliklariga teng. Shuning uchun:

3-misol. Zichlik funksiyasi bilan berilgan ko‘rsatkichli taqsimotning matematik kutilishi, dispersiyasi, o‘rta kvadratik chetlanishini toping.
Yechish:




Download 104,61 Kb.

Do'stlaringiz bilan baham:
  1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish