Ning Ikki o’zgaruvchili funksiyaning grafigi


Ikki o’zgaruvchili funksiyaning uzluksizligi



Download 0,64 Mb.
bet4/10
Sana10.03.2022
Hajmi0,64 Mb.
#488290
1   2   3   4   5   6   7   8   9   10
Bog'liq
2 5337276393254293255

1.3. Ikki o’zgaruvchili funksiyaning uzluksizligi

y = f (M) = f (x1; x2; …; xn) funksiya V  Rn to`plamda aniqlangan bo`lib, nuqta V to`plamning quyuqlanish nuqtasi va M0 є V bo`lsin.


Funksiyaning nuqtada uzluksizligini, funksiya limitini ta`riflagan kabi, ikki teng kuchli ta`riflardan biri orqali aniqlash mumkin.
Har bir hadi V to`plamga tegishli va uning M0 quyuqlanish nuqtasiga yaqinlashuvchi har qanday M1, M2, …, Mk, … nuqtalar ketma-ketligi uchun, mos funksiya qiymatlari f (M1), f (M2), …, f (Mk), … sonli ketma-ketligi f (M0) songa intilsa, u holda f (M) funksiya M0 nuqtada uzluksiz deyiladi.
Har qanday oldindan tayinlanadigan ε > 0 son uchun M0 nuqtaning shunday bir δ atrofi Sδ(M0) ni ko`rsatish mumkin bo`lsaki, barcha M є Sδ(M0) ∩ V nuqtalar uchun |f (M) - f (M0) | < ε tengsizlik bajarilsa, f (M) funksiya M0 nuqtada uzluksiz deyiladi.
y = f (M) funksiyaning M0 nuqtada uzluksizligi ning mavjudligini va uning funksiyaning M0 nuqtada erishadigan qiymati f (M0) ga tengligini anglatadi, ya`ni .
shart shartga teng kuchli ekanligini e`tiborga olsak, argumentlar orttirmalari deb ataladigan , , …, almashtirishlar va ularga mos funksiyaning M0 nuqtadagi orttirmasi deyiladigan f (M) - f (M0) = Δf (M0) almashtirish kiritsak, shartlar

ko`rinishda yoziladi. Bu esa, funksiyaning nuqtada uzluksizligi, shu nuqtada barcha argumentlarning cheksiz kichik orttirmalariga funksiya-ning ham cheksiz kichik orttirmasi mos kelishini anglatadi.
Xususiy holda, yuqorida keltirilgan ta`riflarni bir o`zgaruvchili funksiya uchun bayon qilishda M ni x bilan almashtirish kifoya qiladi.
Masalan:
1) y = cos x funksiya har bir x0 є R1 nuqtada uzluksiz, chunki


2) y = a1x1 + a2x2 + … +an xn chiziqli funksiya har bir M(x1; x2; …; xn) є Rn nuqtada uzluksiz va hokazo.



Download 0,64 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish