Ning Ikki o’zgaruvchili funksiyaning grafigi


Uzluksiz funksiyalar xossalari. To`plamda uzluksizlik



Download 0,64 Mb.
bet5/10
Sana10.03.2022
Hajmi0,64 Mb.
#488290
1   2   3   4   5   6   7   8   9   10
Bog'liq
2 5337276393254293255

Uzluksiz funksiyalar xossalari. To`plamda uzluksizlik. Nuqtada uzluksiz funksiyalar quyidagi xossalar bilan xarakterlаnadi:
1. f (M) va g(M) funksiyalar M0 nuqtada uzluksiz bo`lsa, u holda M0 nuqtada quyidagi funksiyalar ham uzluksiz bo`ladi:
a) f (M) + g(M); b) k f (M) (k – o`zgarmas); c) f (M) · g(M);
d) (g(M0) ≠ 0).
2. Agar f (M) funksiya V to`plamda aniqlangan bo`lib, M0 є V nuqtada uzluksiz va f (M0) > 0 (f (M0) < 0) bo`lsa, u holda M0 nuqtaning shunday bir δ atrofi Sδ(M0) mavjudki, barcha M є Sδ(M0) ∩ V nuqtalar uchun f (M) > 0 (f (M) < 0) tengsizlik o`rinli bo`ladi.
To`plamning har bir nuqtasida uzluksiz funksiyaga to`plamda uzluksiz funksiya deyiladi.
To`plamda uzluksiz funksiyalar esa quyidagi xossalarga ega:
1. Agar f (M) funksiya ixcham (chegaralangan va yopiq) V to`plamda uzluksiz bo`lsa, u holda f (M) funksiya V to`plamda chegaralangandir.
2. Agar f (M) funksiya ixcham V to`plamda uzluksiz bo`lsa, u holda f (M) funksiya V to`plamda o`zining eng katta va eng kichik qiymatlariga erishadi. Bir o`zgaruvchili funksiya uchun yuqorida qayd qilingan xossalardan tashqari, qo`shimcha quyidagi xossa o`rinli:
3. Agar f (x) funksiya [a; b] kesmada uzluksiz va kesmaning chetki nuqtalarida turli ishorali qiymatlarga erishsa (f (a) · f (b) < 0), u holda (a; b) intervalga tegishli kamida bitta c nuqta topiladiki, f (c) = 0 tenglik bajariladi (1-rasm).

1-rasm.


II BOB. IKKI O’ZGARUVCHILI FUNKSIYA EKSTREMUMLARI VA UNING GRAFIGI



2.1. Ikki o’zgaruvchili funksiyaning xususiy hosilalari va uning differensiallari




funksiya to’plamda aniqlangan va uzluksiz bo‘lib, , , va nuqtalar to‘plamga tegishli bolsin, bu yerda argumentlarning orttirmalari.
va
ayirmalarga funksiyaning nuqtadagi va o‘zgaruvchilar bo‘yicha xususiy orttirmalari deyiladi.
ayirmaga
funksiyaning nuqtadagi to‘liq orttirmasi deyiladi.
Misol. funksiyaning nuqtadagi xususiy va to‘liq orttirmalarini va lar uchun topamiz:






1-ta’rif. Agar nisbatining dagi limiti mavjud bo‘lsa, bu limitga funksiyaning nuqtadagi o‘zgaruvchi bo‘yicha xususiy hosilasi deyiladi va ko‘rinishlarda belgilanadi.
Demak,
.
funksiyaning nuqtadagi o‘zgaruvchi bo‘yicha xususiy hosilasi shu kabi ta’riflanadi:
.
( ) o‘zgaruvchi funksiyasining xususiy hosilalari ham funksiyaning xususiy hosilalari kabi ta’riflanadi va belgilanadi.
Misollar. 1. funksiyaning birinchi tartibli xususiy hosilalarini topamiz:


2. funksiyaning birinchi tartibli xususiy hosilalarini topamiz:

funksiya xususiy hosilalarining geometrik ma’nolarini aniqlaymiz.

Download 0,64 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish