N. P. Rasulov, I. I. Safarov, R. T. Muxitdinov


Isbot: Aniq integral ta’rifi va limit xossasiga asosan . II xossa



Download 0,88 Mb.
bet34/60
Sana16.01.2022
Hajmi0,88 Mb.
#378705
1   ...   30   31   32   33   34   35   36   37   ...   60
Bog'liq
N. P. Rasulov, I. I. Safarov, R. T. Muxitdinov

Isbot: Aniq integral ta’rifi va limit xossasiga asosan

.

II xossa: Ikki yoki undan ortiq funksiyalar algebraik yig‘indisining aniq integrali qo‘shiluvchilar aniq integrallarining algebraik yig‘indisiga teng bo‘ladi, ya’ni

(15)

tenglik o‘rinli bo‘ladi. Bunda tenglikning o‘ng tomonidagi aniq integrallar mavjud deb hisoblanadi.



Isbot: Aniq integral ta’rifi va limit xossasiga asosan





.

III xossa: Agar [а, b] kesmada f(x)0 va integrallanuvchi bo‘lsa, unda uning aniq integrali uchun

(16)

tengsizlik o‘rinli bo‘ladi.



Isbot: Bu holda integral yig‘indida fi)≥0, Δxi>0 (i=1,2,3,∙∙∙, n) bo‘lgani uchun va aniq integral ta’rifi hamda limit xossasiga asosan

,

ya’ni (16) tengsizlik o‘rinli ekanligi kelib chiqadi.



IV xossa: Agar [а, b] kesmada f(x) va g(x) funksiyalar integrallanuvchi hamda f(x)≤ g(x) bo‘lsa, unda ularning aniq integrallari uchun

(17)

tengsizlik o‘rinli bo‘ladi.



Isbot: II xossaga asosan h(x)=g(x)–f(x) funksiya berilgan [а,b] kesmada integrallanuvchi bo‘ladi. Bundan tashqari f(x)≤g(x) shartdan h(x)0 ekanligi kelib chiqadi. Unda, IV va II xossalardan foydalanib, (17) tengsizlikka quyidagicha erishamiz:



.

V xossa: Agar a<c<b va f(x) funksiya [a,c] , [c,b] kesmalarda

integrallanuvchi bo‘lsa, unda u [a,b] kesmada ham integrallanuvchi va



(18)

tenglik o‘rinli bo‘ladi.



Isbot: Bu xossani qat’iy matematik isbotini keltirmasdan, uni integralning

geometrik mazmuniga asoslangan (71-rasmga qarang) talqinini keltirish bilan chegaralanamiz.




71-rasm

(18) tenglikning o‘ng tomonidagi birinchi integral y=f(x) funksiya grafigi orqali hosil qilingan aACc egri chiziqli trapetsiyaning S1 yuzasini, ikkinchi integral cCBb egri chiziqli trapetsiyaning S2 yuzasini ifodalaydi. (18) tenglikning chap tomondagi integral esa y=f(x) funksiya grafigi orqali hosil qilingan aABb egri chiziqli trapetsiyaning S yuzasini ifodalaydi. Bu yerda S=S1+S2 tenglik o‘rinli va uni integrallar orqali ifodalab, (18) tenglikni hosil etamiz.



Izoh: III xossani ifodalovchi (18) tenglik c<a va c>b holda ham o‘rinli bo‘ladi. Masalan, c>b holda a<b<c bo‘lgani uchun (18) tenglik yuqoridagi mulohazalar va (12) tenglikka asosan quyidagicha keltirib chiqariladi:



.

VI xossa: Har qanday [a,b] kesmada o‘zgarmas f(x)=1 funksiya integrallanuvchi va

(19)

tenglik o‘rinli bo‘ladi.



Isbot: Bu holda integral yig‘indida fi)=1, Δxi=xixi–1 (i=1,2,3,∙∙∙, n), x0=a va xn=b bo‘lgani uchun

Bu yerdan integral ta’rifi va limit xossasidan (19) tenglik kelib chiqadi:

.

Izoh: Integralning geometrik ma’nosiga ko‘ra (19) tenglikdagi aniq integral asosi [a,b] kesmadan iborat va balandligi f(x)=1 bo‘lgan to‘g‘ri to‘rtburchak yuzasini ifodalaydi va bu yuza S=1∙(b–a)= b–a ekanligidan ham (19) tenglikka ishonch hosil etish mumkin.

VII xossa: Agar [a,b] kesmada (a<b) integrallanuvchi y=f(x) funksiyaning shu kesmadagi eng kichik va eng katta qiymatlari mos ravishda m va M bo‘lsa, unda aniq integral uchun

(20)

qo‘sh tengsizlik o‘rinli bo‘ladi.



Isbot: Shartga asosan [a,b] kesmada mf(x)≤M bo‘lgani uchun IV xossa va (19) tenglikdan hamda I xossadan foydalanib, quyidagilarni olamiz:



.

Bu xossaning geometrik ma’nosi shundan iboratki (72-rasmga qarang), [a,b] kesmada y=f(x) funksiya grafigi orqali hosil qilingan aABb egri chiziqli trapetsiyaning yuzasi asoslari b–a, balandliklari esa mos ravishda m va M bo‘lgan



aA1B1b va aA2B2b to‘g‘ri to‘rtburchaklar yuzalari orasida joylashgan bo‘ladi .



VIII xossa: Agar ‌|f(x)| funksiya [a,b] kesmada integrallanuvchi bo‘lsa, unda f(x) funksiya ham bu kesmada integrallanuvchi va quyidagi tengsizlik o‘rinli bo‘ladi:

(21)

Isbot: |f(x)|≤ f(x)≤|f(x)| qo‘sh tengsizlikni hadlab integrallab, bu tasdiqqa quyidagicha erishamiz:

.


Download 0,88 Mb.

Do'stlaringiz bilan baham:
1   ...   30   31   32   33   34   35   36   37   ...   60




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish