Mustaqil ish Mavzu: Funksiyaning uzluksizligi. Funksiyaning uzulish nuqtalari va ularning turlari



Download 321,5 Kb.
bet3/3
Sana16.01.2022
Hajmi321,5 Kb.
#371780
1   2   3
Bog'liq
5-M

munosabatga ega bo`lamiz. Bundan esa Dx®0 da Dy®0 bo`lishi kelib chiqadi.

Aytaylik, y=f(x) funksiya xÌR to`plamda aniqlangan bo`lib, x0(x0ÎX) to`plamning (o’ng va chap) limit nuqtasi bo`lsin. Bunda x®x0 da f(x) funksiya uchun quyidagi uch holdan bittasigina bajariladi:

1)               chekli f(x0-0), f(x0+0) chap va o`ng limitlar mavjud va

f(x0-0)=f(x0+0)=f(x0) tenglik o`rinli. Bu holda f(x) funksiya x=xda uzluksiz bo`ladi;

2) f(x0-0), f(x0+0) lar mavjud, lekin f(x0-0)=f(x0+0)=f(x0) tengliklar bajarilmaydi, u holda f(x)®x=x0 nuqtada bir tur uzilishga ega deyiladi;

3) f(x0-0), f(x0+0) larning birortasi cheksiz yoki mavjud emas. Bu holda x0 nuqtada 2 tur uzilishga ega deyiladi;

4) f(x0-0)=f(x0+0)¹f(x0) bo`lsa bunday uzilish, bartaraf qilish mumkin bo`lgan uzilish deyiladi.

Misol. Ushbu f(x)=[x] funksiyaning x0=2 nuqtada birinchi tur uzulishga ega ekanligini ko`rsating.

Yechish. Demak,  [x]=1,   =2

Bundan esa berilgan funksiyaning x0=2 nuqtada birinchi tur uzulishga ega ekanligi kelib chiqadi.

 

Uzluksiz funksiyaning xossalari

 

Berilgan f(x) va q(x) funksiyalar X to`plamda aniqlangan bo`lib, x0ÎX nuqta X to`plamning limit nuqtasi bo`lsin.

1-teorema. Agar f(x) va q(x) funksiyalar x0 nuqtada uzluksiz bo`lsa u holda f(x)±q(x),  f(x)×q(x),   : (q(x)¹0), "xÎX  funksiyalar ham x0 nuqtada uzluksiz bo’ladi.

1-misol. Ushbu f(x)=3x3+sin2x funksiyaning x=R da uzluksizligini ko`rsating.

Yechish. j(x)=x, q(x)=sinx funksiyalar R uzluksiz. Bunda f(x) funksiyani f(x)=3×x×x×x+sinx×sinx ko`rinishda yozamiz, u holda uzluksiz funksiyalar ustidagi arifmetik amallarga ko`ra, f(x) funksiyaning R da uzluksizligi kelib chiqadi.

2-teorema. Agar y=f(x) funksiya [a,b] kesmada uzluksiz bo`lsa, u holda [a;b] kesmada funksiya o`zining eng kichik va eng katta qiymatiga erishadi, ya’ni  shunday   nuqtalar mavjudki, barcha  lar uchun   va   tengsizliklar o`rinli bo`ladi.

Funksiyani  qiymatini y=f(x) funksiyaning [a,b] kesmadagi eng katta qiymati deb,   ni esa eng kichik qiymati deb ataymiz. Bu teorema qisqacha bunday ifodalanadi:            kesmada uzluksiz

funksiya hech bo`lmaganda bir marta eng katta M qiymatga va eng kichik m qiymatga erishadi.

3-teorema. Agar y=f(x) funksiya [a,b] kesmada uzluksiz bo`lib, bu kesmaning uchlarida turli ishorali qiymatlarni qabul qilsa, u holda [a,b] kesmada hech bo`lmaganda shunday bir x=c nuqta topiladiki, bu nuqtada funksiya nolga aylanadi:  f(c)=0; a

Misol. funksiya berilgan. Bu funksiya [1; 2] kesmada uzluksiz. Demak, bu kesmada nolga aylanadigan nuqta mavjud. Haqiqatdan ham   da y=0

4-Teorema. y=f(x) funksiya [a,b] kesmada aniqlangan va uzluksiz bo`lsin. Agar kesmaning uchlarida funksiya teng bo`lmagan f(a)=A, f(b)=B qiymatlarni qabul qilsa, u holda funksiya A va B sonlar orasidagi barcha qiymatlarni qabul qiladi. U holda A<

3-teorema bu teoremaning xususiy holi, chunki A va B lar turli ishoralarga ega bo`lsa, u holda   ni o‘rnida O ni olish mumkin.

Uzluksiz funksiyalarga doir teoremalar

 

1.  x0 nuqtaning yetarli kichik atrofida funksiya chegaralangan bo`ladi.



2. Agar f(x0)¹0 bo`lsa, x0 nuqtaning yetarli kichik atrofida f(x) o’z ishorasini saqlaydi.

Aytaylik, y=f(x) funksiya X to`plamda va z=j(y) funksiya Y to`plamda aniqlangan bo`lib, ular yordamida z=j(f(x)) murakkab funksiya tuzilgan bo`lsin.

Teorema (murakkab funksiya uzluksizligi haqida). Agar f(x) funksiya x0 nuqtada, z=j(y) funksiya x0 ga mos kelgan f(x0) nuqtada uzluksiz bo`lsa z=j(f(x)) funksiya  x0 nuqtada uzluksiz bo`ladi.

Teorema (Boltsano-Koshining 1-teoremasi). Agar f(x) funksiya [a, b] segmentda aniqlangan va uzluksiz bo`lib, segmentning a va b nuqtalarida har xil ishorali qiymatlarga ega bo`lsa, u holda shunday c (a

Teorema (Veyershtrassning 1-teoremasi). Agar f(x) funksiya [a,b] segmentda aniqlangan va uzluksiz bo`lsa, u holda shu segmentda chegaralangan bo`ladi.

Teorema (Veyershtrassning 2-teoremasi). Agar f(x) funksiya [a, b] segmentda aniqlangan va uzluksiz bo`lsa, funksiya shu segmentda o`zining aniq yuqori hamda aniq quyi chegaralariga erishadi.Misol. Ushbu f(x)= funksiyani uzluksizlikka tekshiring Yechish. Ma’lumki,  bundan foydalanib,  x=0 nuqtada funksiya aniqlanmagan bo`lib, ,  munosabatlar o`rinlidir, bu esa ta’rifga ko’ra x=0 nuqta f(x) funksiya uchun 2 tur uzilish nuqtasi ekanligini bildiradi.

 

Etiboringiz uchun raxmat.
Download 321,5 Kb.

Do'stlaringiz bilan baham:
1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish