Muhammad al-xorazmiy nomidagi toshkent axborot texnologiyalari universiteti



Download 34.22 Kb.
bet1/5
Sana08.11.2019
Hajmi34.22 Kb.
  1   2   3   4   5


O`ZBEKISTON RESPUBLIKASI AXBOROT TEXNOLOGIYALARI VA KOMMUNIKATSIYALARINI RIVOJLANTIRISH VAZIRLIGI

MUHAMMAD AL-XORAZMIY NOMIDAGI

TOSHKENT AXBOROT TEXNOLOGIYALARI UNIVERSITETI


MUSTAQIL ISH

Bajardi: Iminoxunova N



Tekshrdi:Adirov T

Aniq integral va uning xossalari. Aniq integralni hisoblash usullari
kesmada f(x) funksiya aniqlangan bo’lsin. kesmani nuqtalar bilan n ta bo’lakka ajratamiz. Har bir kesmadan ixtiyoriy nuqta olib

yig’indini tuzamiz. Bunda



ko’rinishidagi yig’indi integral yig’indi deyiladi. Uning max dagi limiti mavjud va chekli bo’lsa, unga f(x) funksiyaning a dan b gacha aniq integrali deyiladi va u



ko’rinishida yoziladi.

Bu holda f(x) funksiya kesmada integrallanuvchi deyiladi. f(x) funksiyaning integrallanuvchi bo’lishi uchun u kesmada uzluksiz bo’lishi yoki chekli sondagi uzilishlarga ega bo’lishi kifoyadir.

Aniq integral quyidagi bir qator xossalarga ega:

1. ;

., agar bo’lsa;



;

.

Agar kesmada va integrallanuvchi bo’lsa, u holda



tengsizlik o’rinli bo’ladi;

6. Agar kesmada va funksiyalar integrallanuvchi hamda bo’lsa, u holda ularning aniq integrallari uchun tengsizlik o’rinli bo’ladi.

Agar va f(x) funksiya , kesmalarda integrallanuvchi bo’lsa, unda kesmada ham integrallanuvchi va tenglik o’rinli bo’ladi.

Agar kesmada (a tengsizlik o’rinli bo’ladi;

Agar funksiya kesmada integrallanuvchi bo’lsa, u holda f(x) funksiya ham bu kesmada integrallanuvchi va quyidagi tengsizlik o’rinli bo’ladi:

10. Agar f(x) funksiya kesmada uzluksiz bo’lsa, u holda bu kesmada shunday 𝜉 nuqta mavjud bo’ladiki, unda



tenglik o’rinli bo’ladi.



Agar F(x) uzluksiz f(x) funksiyaning biror boshlang’ich funksiyasi bo’lsa, u holda

tenglik o’rinli bo’ladi. Bu tenglik aniq integralni hisoblashning Nyuton-Leybnis formulasi deyiladi.

Ba’zi aniq integrallarni hisoblashda bo’laklab integrallash formulasi deb ataluvchi

formuladan foydalaniladi.



Berilgan uzluksiz funkisiyadan kesma bo’yicha olingan

aniq integiralni ba’zi hollarda biror differensiallanuvchi funksiya orqali “eski” x o’zgaruvchidan “yangi” t o’zgaruchiga o’tish usulida foydalanib hisoblash mumkin bo’ladi. Bunda quyidagi shartlar qo’yiladi:

1. (

2. (t) vafunksiyalar t[] kesmada uzluksiz:

3. [ murakkab funksiya [ kesmada aniqlangan va uzluksiz.

Bu shartlarda ushbu formula o’rinli bo’ladi:



Bu formula aniq integralda o’zgaruvchini almashtirish formulasi deyiladi.



Download 34.22 Kb.

Do'stlaringiz bilan baham:
  1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2020
ma'muriyatiga murojaat qiling

    Bosh sahifa
davlat universiteti
ta’lim vazirligi
O’zbekiston respublikasi
maxsus ta’lim
zbekiston respublikasi
o’rta maxsus
davlat pedagogika
axborot texnologiyalari
nomidagi toshkent
pedagogika instituti
texnologiyalari universiteti
navoiy nomidagi
samarqand davlat
guruh talabasi
ta’limi vazirligi
nomidagi samarqand
toshkent axborot
toshkent davlat
haqida tushuncha
Darsning maqsadi
xorazmiy nomidagi
Toshkent davlat
vazirligi toshkent
tashkil etish
Alisher navoiy
Ўзбекистон республикаси
rivojlantirish vazirligi
matematika fakulteti
pedagogika universiteti
таълим вазирлиги
sinflar uchun
Nizomiy nomidagi
tibbiyot akademiyasi
maxsus ta'lim
ta'lim vazirligi
махсус таълим
bilan ishlash
o’rta ta’lim
fanlar fakulteti
Referat mavzu
Navoiy davlat
umumiy o’rta
haqida umumiy
Buxoro davlat
fanining predmeti
fizika matematika
universiteti fizika
malakasini oshirish
kommunikatsiyalarini rivojlantirish
davlat sharqshunoslik
jizzax davlat