Microsoft Word Kurzweil, Ray The Singularity Is Near doc



Download 13,84 Mb.
Pdf ko'rish
bet34/303
Sana15.04.2022
Hajmi13,84 Mb.
#554549
1   ...   30   31   32   33   34   35   36   37   ...   303
Bog'liq
Kurzweil, Ray - Singularity Is Near, The (hardback ed) [v1.3]

Can We Evolve Artificial Intelligence from Simple Rules? 
So how do we get from these interesting but limited patterns to those of insects or Chopin interludes? One 
concept we need into consideration is conflict—that is, 
evolution
. If we add another simple concept—an 
evolutionary algorithm—to that of Wolfram's simple cellular automata, we start to get far more exciting and 


more intelligent results. Wolfram say that the class 4 automata and an evolutionary algorithm are 
"computationally equivalent." But that is true only on what I consider the "hardware" level. On the software 
level, the other of the patterns produced are clearly different an of a different order of complexity and 
usefulness. 
An evolutionary algorithm can start with randomly generated potential solutions to a problem, which are 
encoded in a digital genetic code. We then have the solutions compete with one another in a simulated 
evolutionary battle. The better solutions survive and procreate in a simulated sexual reproduction in which 
offspring solutions are created, drawing their genetic code (encoded solutions) from two parents. We can 
also introduce a rate of genetic mutation. Various high-level parameters of this process, such as the rate of 
mutation, the rate of offspring, and so on, are appropriately called "God parameters," and it is the job of the 
engineer designing the evolutionary algorithm to set them to reasonably optimal values. The process is run 
for many thousands of generations of simulated evolution, and at the end of the process one is likely to find 
solutions that are of a distinctly higher order than the starting ones. 
The results of these evolutionary (sometimes called genetic) algorithms can be elegant, beautiful, and 
intelligent solutions to complex problems. They have been used, for example, to create artistic designs and 
designs for artificial life-forms, as well as to execute a wide range of practical assignments such as 
designing jet engines. Genetic algorithms are one approach to "narrow" artificial intelligence—that is, 
creating systems that can perform particular functions that used to require the application of human 
intelligence. 
But something is still missing. Although genetic algorithms are a useful tool in solving specific problems
they have never achieved anything resembling "strong AI"—that is, aptitude resembling the broad, deep, 
and subtle features of human intelligence, particularly its power of pattern recognition and command 
language. Is the problem that we are not running the evolutionary algorithms long enough? After all, humans 
evolved through a process that took billions of years. Perhaps we cannot re-create that process with just a 
few days or weeks of computer simulation. This won't work, however, because conventional genetic 
algorithms reach an asymptote in their level of performance, so running them for a longer period of time 
won't help. 
A third level (beyond the ability of cellular processes to produce apparent randomness and genetic 
algorithms to produce focused intelligent solutions) is to perform evolution on multiple levels. Conventional 
genetic algorithms allow evolution only within the confines of a narrow problem and a single means of 
evolution. The genetic code itself needs to evolve; the rules of evolution need to evolve. Nature did not stay 
with a single chromosome, for example. There have been many levels of indirection incorporated in the 
natural evolutionary process. And we require a complex environment in which the evolution takes place. 
To build strong AI we will have the opportunity to short-circuit this process, however, by reverse-
engineering the human brain, a project well under way, thereby benefiting from the evolutionary process that 
has already taken place. We will be applying evolutionary algorithms within these solutions just as the 
human brain does. For example, the fetal wiring is initially random within constraints specified in the genome 
in at least some regions. Recent research shows that areas having to do with learning undergo more 
change, whereas structures having to do with sensory processing experience less change after birth.
72
Wolfram make the valid point that certain (indeed, most) computational processes are not predictable. 
In other words, we cannot predict future state without running the entire process, I agree with him that we 
can know the answer in advance only if somehow we can simulate a process at a faster speed. Given that 
the universe runs at the fastest speed it can run, there is usually no way to short-circuit the process. 
However, we have the benefits of the billions of years of evolution that have already taken place, which are 
responsible for the greatly increased order of complexity in the natural world. We can now benefit from it by 
using out evolved tools to reverse engineer the products of biological evolution (most importantly, the human 
brain). 
Yes, it is true that some phenomena in nature that may appear complex at some level are merely the 
results of simple underlying computational mechanisms that are essentially cellular automata at work. The 
interesting pattern of triangles on a "tent oliuve" (cited extensively by Wolfram) or the intricate and varied 
patterns of a snowflake are good example. I don't think this is a new observation, in that we've always 


regarded the design of snowflakes to derive from a simple molecular computation-like building process. 
However, Wolfram does provide us with a compelling theoretical foundation for expressing these processes 
and their resulting patterns. But there is more to biology than class 4 patterns. 
Another important these by Wolfram lies in his thorough treatment of computation as a simple and 
ubiquitous phenomenon. Of course, we've known for more than a century that computation is inherently 
simple: we can build any possible level of complexity from a foundation of the simplest possible 
manipulations of information. 
For example, Charles Babbage's late-nineteenth-century mechanical computer (which never ran) 
provided only a handful of operation codes, yet provided (within its memory capacity and speed) the same 
kinds of transformations that modern computers do. The complexity of Babbage's invention stemmed only 
from the details of its design, which indeed proved too difficult for Babbage to implement using the 
technology available to him. 
The Turing machine, Alan Turing's theoretical conception of a universal computer in 1950, provides only 
seven very basic commands, yet can be organized to perform any possible computation.
73
The existence of 
a "universal Turing machine," which can simulate any possible Turing machine that is described on its tape 
memory, is a further demonstration of the universality and simplicity of information.
74
In 

Download 13,84 Mb.

Do'stlaringiz bilan baham:
1   ...   30   31   32   33   34   35   36   37   ...   303




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish