between on and off states, was reported in the July 6, 2001, issue of
Science
.
10
Around the same time, IBM also
demonstrated an integrated circuit with one thousand nanotube-based transistors.
11
More recently, we have seen the first working models of nanotube-based circuitry. In January 2004 researchers at
the University of California at Berkeley and Stanford University created an integrated memory circuit based on
nanotubes.
12
One of the challenges in using this technology is that some nanotubes are conductive (that is, simply
transmit electricity), while others act like semiconductors (that is, are capable of switching and able to implement logic
gates). The difference in capability is based on subtle structural features. Until recently, sorting them out required
manual operations, which would not be practical for building large-scale circuits. The Berkeley and Stanford scientists
addressed this issue by developing a fully automated method of sorting and discarding the nonsemiconductor
nanotubes.
Lining up nanotubes is another challenge with nanotube circuits, since they tend to grow in every direction. In
2001 IBM scientists demonstrated that nanotube transistors could be grown in bulk, similar to silicon transistors. They
used a process called "constructive destruction," which destroys defective nanotubes right on the wafer instead of
sorting them out manually. Thomas Theis, director of physical sciences at IBM's Thomas J. Watson Research Center,
said at the time, "We believe that IBM has now passed a major milestone on the road toward molecular-scale chips....If
we are ultimately successful, then carbon nanotubes will enable us to indefinitely maintain Moore's Law in terms of
density, because there is very little doubt in my mind that these can be made smaller than any future silicon
transistor.
13
In May 2003 Nantero, a small company in Woburn, Massachusetts, cofounded by Harvard University
researcher Thomas Rueckes, took the process a step further when it demonstrated a single-chip wafer with ten billion
nanotube junctions, all aligned in the proper direction. The Nantero technology involves using standard lithography
equipment to remove automatically the nanotubes that are incorrectly aligned. Nantero's use of standard equipment has
excited industry observers because the technology would not require expensive new fabrication machines. The
Nantero design provides random access as well as nonvolatility (data is retained when the power is off), meaning that
it could potentially replace all of the primary forms of memory: RAM, flash, and disk.
Do'stlaringiz bilan baham: